
Extending EcoAndroid with Automated Detection of Resource
Leaks

Ricardo B. Pereira
INESC-ID & IST, University of Lisbon

Lisbon, Portugal

João F. Ferreira
INESC-ID & IST, University of Lisbon

Lisbon, Portugal

Alexandra Mendes
HASLab / INESC TEC & Faculty of Engineering,

University of Porto, Porto, Portugal

Rui Abreu
INESC-ID & Faculty of Engineering, University of Porto

Porto, Portugal

ABSTRACT
When developing mobile applications, developers often have to
decide when to acquire and when to release resources. This leads
to resource leaks, a kind of bug where a resource is acquired but
never released. This is a common problem in Android applications
that can degrade energy efficiency and, in some cases, can cause
resources to not function properly.

In this paper, we present an extension of EcoAndroid, an An-
droid Studio plugin that improves the energy efficiency of Android
applications, with an inter-procedural static analysis that detects
resource leaks. Our analysis is implemented using Soot, FlowDroid,
and Heros, which provide a static-analysis environment capable of
processing Android applications and performing inter-procedural
analysis with the IFDS framework. It currently supports the de-
tection of leaks related to four Android resources: Cursor, SQLite-
Database, Wakelock, and Camera. We evaluated our tool with the
DroidLeaks benchmark and compared it with 8 other resource leak
detectors. We obtained a precision of 72.5% and a recall of 83.2%.
Our tool was able to uncover 191 previously unidentified leaks
in this benchmark. These results show that our analysis can help
developers identify resource leaks.

CCS CONCEPTS
• Software and its engineering→ Automated static analysis.

KEYWORDS
Energy Consumption, Resource Leaks, Android, Green Software

ACM Reference Format:
Ricardo B. Pereira, João F. Ferreira, Alexandra Mendes, and Rui Abreu. 2022.
Extending EcoAndroid with Automated Detection of Resource Leaks. In
IEEE/ACM 9th International Conference on Mobile Software Engineering and
Systems (MOBILESoft ’22), May 17–24, 2022, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3524613.3527815

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9301-0/22/05. . . $15.00
https://doi.org/10.1145/3524613.3527815

1 INTRODUCTION
Mobile devices are more than ever prevailing in our society, with
the estimated number of smartphone users in 2022 to be around
6.6 billion worldwide [26]. Android is the most used operating
system, with its market share hitting an estimated 85%, followed by
iOS with 15% [10]. The market for Android applications has also
grown throughout the years, at times totaling a number of 3 million
applications available in the Google Play Store [2, 11].

Recent research has been uncovering energy problems and inef-
ficiencies that decrease the battery life of Android devices [5, 8, 33].
Given the sheer number of mobile devices in use, taking action
to solve these energy problems and increasing the overall energy
efficiency of Android applications can have a significant impact on
energy consumption. Moreover, it can also impact user experience:
a 2013 study has shown that approximately 18% of the complaints
in the Google Play Store were related to energy problems in appli-
cations [34].

The diversity of sensors that modern mobile devices provide—
such as cameras, fingerprint readers, and GPS receivers— has been
growing [1], allowing developers to create applications that interact
with users in novel ways. This interaction between applications
and sensors can be handled manually by the developer through the
API provided by Android; however, if not well implemented, it can
have huge costs on the battery life of the device [22]. One problem
that may arise from this incorrect use of resources is known as
resource leak, and happens when the developer acquires a resource
to be used by the application, but forgets to release it (i.e. turning
off the resource). Recent research around resource leaks shows that
this problem is prevalent regarding energy and performance in
Android devices [6, 22, 36], but not always have researchers been
able to find resource leaks in applications [12]. More generally,
detection of leaks and their localization was identified by Microsoft
practitioners as one of the top ten important research ideas [25].

This paper describes an extension of EcoAndroid [29], an An-
droid Studio plugin, with the ability to automatically detect re-
source leaks in Android applications. Our main contribution is a
context- and flow-sensitive inter-procedural static analysis capable
of detecting resource leaks in Android applications. Currently, our
implementation supports the detection of four resources: Cursor,
SQLiteDatabase, Wakelock and Camera. These resourceswere cho-
sen based on how frequently Android developers use them, and the
impact they have on the mobile device if a leak occurs [22].

https://doi.org/10.1145/3524613.3527815
https://doi.org/10.1145/3524613.3527815

MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA Ricardo B. Pereira, João F. Ferreira, Alexandra Mendes, and Rui Abreu

We evaluated our analysis on DroidLeaks [22], a publicly avail-
able resource leaks benchmark. We detected 203 leaks, where 191
are new and undiscovered leaks. We obtained a precision of 72.5%,
a recall of 83.2%, and an F-Score of 77.5%.

When considering all the resource leaks included in DroidLeaks
that are of one of the four supported types (50 leaks in total), we
obtained a bug detection rate of 18% and a false alarm rate of 2%.
While the bug detection rate of our tool can improve substantially
when compared with the 8 tools considered by DroidLeaks, the
false alarm rate is among the best (only Android Lint is better).

Contributions summary. Our main contributions can be summa-
rized as follows:

• Wepresent a new context- and flow-sensitive inter-procedural
static analysis capable of detecting resource leaks in Android
applications. To the best of our knowledge, it is the first IFDS-
based resource leak analysis that supports multiple Android
resources.

• We provide an implementation of the analysis that can be
executed as a standalone tool or run integrated in IntelliJ or
Android Studio (as part of the plugin EcoAndroid).

• We extend the DroidLeaks benchmark, with the addition of
191 new resource leaks identified and described, with most
of the resource leaks identified concerning the use of Cursor
and SQLite Database resources.

All our source code and data are available in EcoAndroid’s Github
repository: https://github.com/sr-lab/EcoAndroid. EcoAndroid is
also available in the JetBrains Marketplace: https://plugins.jetbrains.
com/plugin/15637-ecoandroid

2 BACKGROUND
In this section, we present background knowledge about the An-
droid architecture, resource leaks, EcoAndroid, and the frameworks
used in our development.

2.1 Android Architecture
Android applications are built upon four essential components [16,
21, 32]:

(1) Activity. This component represents a screen with a user
interface and it handles all user interaction.

(2) Service. This component runs in the background to per-
form time-intensive operations and work related to remote
processes. It does not provide a user interface.

(3) Broadcast Receiver. This component allows an application
to receive events from the user or the system.

(4) Content Provider. This component is used tomanage shared
data between multiple applications.

An activity can transition through multiple states as the user
interacts with the application and with the system itself. There are
four states an activity can go through: running, paused, stopped, and
destroyed. The developer has to explicitly program how an activity
transitions between these states. This is done using callbacks pro-
vided by the Android API: onCreate(), onStart(), onResume(),
onPause(), onStop(), and onDestroy() [17, 32]. The complete
lifecycle and state transitions of an activity are illustrated in Fig-
ure 1.

onPause

Resumed

onStart
Created

onResume

Started

onStop

onResume

Paused

onRestart,
onStart

onDestroy

Stopped

Destroyed

onCreate

Android
OS

Figure 1: Android activity lifecycle (adapted from Android
Guide [17] and Android Fundamentals [15])

The Android system starts a new Linux process when an appli-
cation component starts and no other component from that appli-
cation is running. After that, all components from an application
run in the same process and in the same thread, unless otherwise
specified. The thread created when the application is launched is
called the main thread. It is responsible for dispatching events to
the user interface widgets, and is almost always the thread that
interacts with the components from the Android UI toolkit, and so
it is often called the UI thread. To avoid blocking the UI thread, as
to keep the application responsive, tasks that are not instantaneous
should be done using a separate thread [17].

The Android framework is mainly event-driven [35]. Event-
based programs make use of callbacks, which are functions that are
called after certain events are completed. An example of callbacks
are the functions used in the activity lifecycle to transition between
states. These functions are called after certain events occur and are
responsible for managing the activity’s state. Event handlers are a
more specific type of callback; these are functions that are executed
after a certain event related to the user interaction happens (e.g., the
function that executes when a user clicks on a button) [19, 22, 23].

2.2 Resource Leaks
As mentioned before, the number of sensors and hardware com-
ponents in mobile devices has been growing over the years. These
components— also called resources— are known for being one of
the biggest energy consumers in Android devices [37]. When a
developer wants to use a resource, they must explicitly acquire
and release it manually. This is usually done via Android-specific
API calls, which vary from resource to resource [22]. A resource
leak occurs when a programmer forgets to release a resource they
previously acquired, after it is done being used. A resource leak
causes components to stay active and consume battery, even if
they are no longer needed. Apart from the unnecessary battery
usage, a resource leak may cause the resource to not function prop-
erly for other applications or even cause the Android system to
crash [22, 37].

Listing 1 shows an example from an older version of AnkiDroid1,
where a resource— in this case, a database cursor— is acquired at
1https://github.com/ankidroid/Anki-Android

https://github.com/sr-lab/EcoAndroid
https://plugins.jetbrains.com/plugin/15637-ecoandroid
https://plugins.jetbrains.com/plugin/15637-ecoandroid
https://github.com/ankidroid/Anki-Android

Extending EcoAndroid with Automated Detection of Resource Leaks MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA

1 private static SQLiteDatabase upgradeDB(...) {
2 (...)
3 Cursor c = mMetaDb.rawQuery(...);
4 int columnNumber = c.getCount();
5 if (columnNumber > 0) {
6 if (columnNumber < 7) {
7 (...)
8 }
9 } else {
10 mMetaDb.execSQL(...);
11 }
12 mMetaDb.setVersion(databaseVersion);
13 Timber.i(...);
14 // resource leak: missing call to c.close()
15 return mMetaDb;
16 }

Listing 1: Resource leak of a database cursor in an old version
of AnkiDroid

the beginning of a function. The cursor is acquired (line 3), but not
closed before exiting the method (line 14)2.

2.3 EcoAndroid
EcoAndroid [29] is an extendable open source Android Studio plu-
gin created to assist developers in creating energy-efficient mobile
applications by automatically applying a set of energy patterns to
Java source code. At the time of writing, it supports ten different
cases of energy-related refactorings, distributed over five energy
patterns taken from the literature [13]: Dynamic Retry Delay, Push
Over Poll, Reduce Size, Cache, and Avoid Extraneous Graphics and
Animations. In some of these patterns more than one case was
implemented (totaling the 10 cases).

EcoAndroid provides two types of warnings: informational warn-
ings and non-informational warnings. The first type does not have
an automated refactoring associated. This is because either i) the
suggestion is impossible to implement without further information
(e.g., in the case of the Push Over Poll energy pattern, registration
of the class in Firebase is needed) or ii) the required changes affect
too much code. For these cases, if the developer wishes to follow
EcoAndroid’s suggestion and implement the changes manually, the
plugin introduces a TODO comment so that the change is listed in
the IDE’s TODO window. The second type of warning has an auto-
mated refactoring associated and will change the code by applying
the identified energy pattern.

EcoAndroid is currently available in the JetBrains Marketplace:
https://plugins.jetbrains.com/plugin/15637-ecoandroid

2.4 Analysis Tools
Our analysis is implemented using Soot [31], FlowDroid [3], and
Heros [7], which provide a static-analysis environment capable of
processing Android applications and performing inter-procedural
analysis with the IFDS framework [28].

Soot3 [31] can be used to instrument and analyze Java and An-
droid applications. It works by translating programs into one of
four intermediate representations that can later be analyzed. It

2Commit available at: https://github.com/ankidroid/Anki-Android/commit/
3725ce75828aaf4fa0b7bc36416a973f2ea6a157
3https://soot-oss.github.io/soot

Figure 2: EcoAndroid detection and refactoring process

supports call graph construction, point-to analysis, intra- and inter-
procedural data-flow analysis, and taint analysis. Soot uses a few
data structures to represent objects used in the analysis. The Scene
class is used to represent the environment the analysis will take
place in. Through it, the developer can see the application classes,
the main class (which contains the application’s main method), and
access information about the analysis (e.g., control-flow graphs,
call graphs). A SootMethod represents a single method of a class.
Classes loaded or created in Soot are represented as a SootClass. A
Body represents a method body, which contains Units. Units repre-
sent statements (e.g., assignment statements, return statements, and
conditional statements) in the code. A single datum is expressed as
a Value, which can be, e.g., a local (Local) or an expression (Expr).
A Local represents a variable in Soot’s intermediate representa-
tions. The four intermediate representations provided by Soot are:
Baf, Jimple, Grimp, and Shimple. The most used intermediate rep-
resentation is Jimple, which is typed and statement-based. Jimple’s
succinctness is convenient for performing analysis and optimiza-
tions (it has a total of 15 statements, compared to more than 200
instructions in Java bytecode). The execution of Soot is divided
into phases called packs. The developer can create transformations,
which can be registered to a pack that will run it. Transformations
are what allow developers to create optimizations, analysis, or even
annotate code in an intermediate representation.

FlowDroid is a data-flow analysis tool capable of computing
data-flows in Android applications and Java programs [3]. It special-
izes in tracking the flow of sensitive information through sources
and sinks defined by the developer. FlowDroid can be used as a
library together with Soot, from which it also depends. When used
as a library, FlowDroid also allows Soot to take as input Android
applications (as an APK), and allows the creation of call graphs
with knowledge of the callbacks of the Android framework.

IFDS [28] is a framework for solving inter-procedural data-
flow subset problems. These problems must have distributive flow-
functions over finite domains, and the merge operator for two
data-flow facts must be the set union. The IFDS framework works
by reducing these problems into a graph reachability problem by

https://plugins.jetbrains.com/plugin/15637-ecoandroid
https://github.com/ankidroid/Anki-Android/commit/3725ce75828aaf4fa0b7bc36416a973f2ea6a157
https://github.com/ankidroid/Anki-Android/commit/3725ce75828aaf4fa0b7bc36416a973f2ea6a157
https://soot-oss.github.io/soot

MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA Ricardo B. Pereira, João F. Ferreira, Alexandra Mendes, and Rui Abreu

specializing the inter-procedural CFG of the program to the analy-
sis being conducted, creating an exploded super graph. Instead of
containing one node to represent program statements, the exploded
super graph contains multiple nodes to represent the data-flow facts
(we show an example of such a graph in Figure 7). In the exploded
super graph, a node n containing a data-flow fact f is reachable
from a start node if and only if the data-flow fact f holds at the
node n. The flow-functions must be represented as nodes and edges.
To express IFDS problems, the user needs to define four different
kinds of edges:

• Call edges: responsible for passing information from call
sites to callees.

• Return edges: responsible for passing information from
callees to call sites.

• Call-to-return: responsible for passing information from
before a call site to all possible call site’s successor state-
ments. Information passing from these edges typically do
not concern the callee.

• Normal edges: for all other statements.
In this work, we use Heros, a generic IFDS/IDE solver that can be
plugged into existing Java-based analysis frameworks [7]. Connect-
ing Heros to a program analysis framework only requires the user
to implement a version of the inter-procedural CFG. The authors
already provide an implementation for the Soot framework. As per
the definitions of the IFDS framework, to specify an IFDS problem
in Heros, the user needs to choose a representation for the data-flow
facts, and also needs to implement the four flow-functions required
by IFDS (see Section 3.2 for more details).

3 RESOURCE LEAK DETECTION
The proposed work extends EcoAndroid in order to automatically
detect resource leaks in Android applications, and is built upon
some of the existing features of the plugin, while integrating static
analysis frameworks required for the detection. The extension is
fully compatible with the current energy pattern detection, which
remains fully functional. The automated detection of resource leaks
is divided into two main components: the Analysis Component
and the Results Component. Each of these components is responsi-
ble for a specific step in the detection of resource leaks. The new
functionality brought by our extension adds more complexity to
EcoAndroid. This translates in a new, longer, and more detailed
user interaction process and plugin operation. Figure 3 shows this
new user interaction process and operation.

3.1 Resource and Leak Representation
Currently, our implementation supports four different Android re-
sources: Cursor, SQLiteDatabase, Wakelock, and Camera. However,
our analysis is general and parametric on the resources supported.
Figure 4 shows the class diagram of the resource representation.
To define a resource, one only needs to specify the fully-qualified
class name of the resource (type); the names of the methods used
to acquire the resource (acquireOp); the fully-qualified name of
the class where the acquireOp can be used (acquireClass); the
names of the methods used to release the resource (releaseOp);
the fully-qualified name of the class where the releaseOp can
be used (releaseClass); the name of the method used to check

 IntelliJ IDEA / Android Studio

Mobile application project

 EcoAndroid

processes and
stores the results

initiates
inspection

 Soot

 FlowDroid Heros

builds the APK

Source codeAPK

Jimple goes to
be processed

Setup Analysis

initiates
analysis

Pre-processing

shows warning in source code
 (aided by PSI API)

Results
Storage

presents source
code as AST

PSI API

APK and project
information
go as input

source code to be presented as AST

fetches the leaks

Inspection

warning about
resource leak

wants to search for
resource leaks

Developer

14

25

6 7

8

9

10

11

3

12

Figure 3: Extended EcoAndroid detection of resource leaks

Resource

- type: String

- acquireOp: String[]

- acquireClass: String[]

- releaseOp: String[]

- releaseClass: String[]

- heldCheckOp: String

- placeToRelease: String

1

ResourceInfo

- name: String

- declaringClass: SootClass

- declaringMethod: SootMethod

- isClassMember: boolean

1

Leak

- leakedMethod: SootMethod

- declaredMethod: SootMethod

- classMember: boolean

- lineNumber: int

Figure 4: Class diagram of the implemented data structures:
Resource, ResourceInfo and Leak (getters and setters omitted)

if the resource is acquired (heldCheckOp); and the name of the
callback method where the resource is supposed to be released
(placeToRelease) — for example, wakelocks are supposed to be
released in onPause().

The analysis will result in a collection of resource leaks. As Fig-
ure 4 shows, each Leak specifies the Resource that was leaked
(resource). It also identifies the method where the resource leak
occurred (leakedMethod), the method where the resource was de-
clared (declaredMethod), a boolean which indicates if the resource
is class-scoped (classMember), and the line number in the source
code where the resource was declared (lineNumber).

3.2 Analysis Component
The Analysis component is one of the the two main components
of our tool. It is responsible for creating and setting up the envi-
ronment for the analysis, and is also responsible for running the
analysis itself. It is implemented on top of Soot, FlowDroid, and
Heros.

As mentioned before, these three frameworks are built to be
easily integrated with each other, as they are maintained by the
same group of developers. Heros implements a solver for the IFDS
framework, and requires the definition of four flow functions. Each

Extending EcoAndroid with Automated Detection of Resource Leaks MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA

flow-function serves a different purpose in the IFDS framework. In
our context we have:

• The function getCallFlowFunction is responsible for han-
dling flow of facts when a method is called.

• The function getReturnFlowFunction is responsible for the
flow of facts when returning from a method. There are two
important cases to deal with: (1) when a resource is acquired
in the called method, and returned to the callee, and (2) when
a resource is passed by reference from the callee to the called
method.

• The function getCallToReturnFlow is responsible for ac-
quiring and releasing method-scope resources and also for
their correct flow.

• The function getNormalFlowFunction handles acquiring
and releasing class-scope resources and handles the flow of
data-flow facts when dealing with if statements.

3.3 Results Component
The Results component is the other main component of our tool. It
is responsible for acquiring the results at the end of the analysis and
then, from these results, collecting the location of possible leaks,
processing them, and presenting the final results to the user.

3.3.1 Collection of Results. Considering the properties of our prob-
lem, our data-flow facts are used to indicate if a given resource is
acquired at some point in the code. If in some statement we have
a data-flow fact, it means that, prior to that statement, a resource
was acquired and has not yet been released. Having this in mind,
our algorithm gathers the return statements where there are data-
flow facts present. The conditions in which we gather the results
depend mainly on the scope of the (possibly) leaked resource. In
terms of our implementation, Heros’ IFDS solver provides a method
to gather results from individual statements of analyzed methods.
The results are a set containing the data-flow facts at any given
statement of the analyzed methods.

3.3.2 Processing of Collected Results. This step is focused on filter-
ing false positives collected in the previous step. When using our
algorithm, it is not enough to collect leaks at the end of a method’s
execution, since we have to keep in mind the inter-procedural na-
ture of the analysis, and that the collected leaks may not be real
leaks (i.e. they can be false positives).

For example, suppose that methodA acquires a resource r and
then calls methodB with r as a parameter. Then, methodB uses r
but does not release it neither does return it. Then, after the call
to methodB, methodA releases the resource r, meaning that the re-
source is not leaked. In this example, our analysis would propagate
to methodB the fact that r was acquired in methodA. Then, a naive
analysis would collect a leak in methodB, since this method does
not return the resource and there is a data-flow fact regarding r
in the method’s return statement. Figure 5 shows the exploded
super-graph of this example, with methodA on the left and methodB
on the right.

With this problem in mind, we developed Algorithm 1 to process
the results. The algorithm goes through the previously collected pos-
sible leaks and, for method-scoped resources, checks if the callers of
the method where the leak was found use the leaked resource and

methodB(r)

release(r)

(. . .)

return

0

call-to-return
edge

call edge

R

0

normal
edge

R

0 R

return edge

return

0 R

0 R

0 R control-flow edge

data-flow edge

acquire(r)

0 R

Figure 5: Example of a false positive of a resource leak

also have the leak; if so, this means we have a leak. For class-scoped
resources, there is a leak if the resource was leaked in the method
where it was supposed to be released.

Algorithm 1: IFDS leaks processing algorithm
begin

for each statement stmt and method m pair previously collected
do

for each fact at stmt do
if fact’s resource is class-scoped then

if the declaring class of the resource in fact is the
declaring class of m and the place to be released of
the resource in fact is m then

Collect the pair stmt and fact

else
for each caller of m do

if caller uses fact’s resource and fact’s resource
is leaked in caller then

Collect the pair stmt and it fact

3.3.3 Result Storage and Presentation. We can run our analysis as
a standalone application or integrated in an IntelliJ IDEA / Android
Studio plugin, such as EcoAndroid. To store the results, we first
need to evaluate how we want to present them to the user.

In the standalone version, the results are presented in CSV files.
For this purpose, we simply store the leaks in three sets: one for the
intra-procedural analysis4, one for the inter-procedural analysis,
and one containing the leaks from both analyses. The CSV files
are generated at the very end of the detection process, having the
information contained in all the leaks, plus the class where the
resource was declared and the class where the resource was leaked,
and performance metrics.

For the IntelliJ IDEA version, we follow the current method-
ology of EcoAndroid, which is to give warnings in the code, as
well as to make them available as results of a code inspection. To
allow this, we first identify the PsiMethods corresponding to the
4Although we have implemented an intra-procedural analysis, our inter-procedural
analysis outperforms it and so the intra-procedural analysis is currently disabled and
is not described in this paper.

MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA Ricardo B. Pereira, João F. Ferreira, Alexandra Mendes, and Rui Abreu

1 public static String getContactName(
2 final Context context, final String address)
3 {
4 //(...)
5 Cursor cursor = getContact(context, address);
6 //(...)
7 return cursor.getString(
8 ContactsWrapper.FILTER_INDEX_NAME);
9 }
10
11 public Cursor getContact(
12 final ContentResolver cr, final String number)
13 {
14 //(...)
15 final Uri uri = Uri.withAppendedPath(
16 Contacts.Phones.CONTENT_FILTER_URL, n);
17 final Cursor c = cr.query(
18 uri, PROJECTION_FILTER, null, null, null);
19 //(...)
20 return c;
21 }

Listing 2: Resource leak (simplified) of an older version of
SMSDroid

leakedMethod in the reported leaks, and we map the leaks to the
corresponding PsiMethodwhere they were leaked. To present them
to the user, we implement a code inspection responsible for visiting
each PsiMethod in the PSI tree and for checking, in the reported re-
sults, if there are any leaks in the visited PsiMethods. At the end of
the detection process, we force IntelliJ’s Code Analyzer Daemon to
restart, which causes the code to be inspected and code warnings to
appear without the user needing to run a full code analysis. Figure 6
shows an example of a leak reported by the extended EcoAndroid.

3.4 Illustrative example
To illustrate and better understand how the IFDS framework

and our analysis work, we provide a real-world example of a leak
detected by our tool and taken from the DroidLeaks dataset, shown
in Listing 2. This is a cursor leak that spans two different methods,
getContact and getContactName, in a version of SMSDroid5. In
getContact, the cursor c is acquired (line 17) and returned (line
20). The method getContactName then calls getContact (line 5),
and uses the cursor to return a string. From here, reference to c
and cursor are lost, and the resource is never released, therefore,
c is leaked. In Figure 7, we see the exploded super-graph of this
example. The graph provides an overview of all the different types
of edges defined in the IFDS framework, and how data flows through
them. In this specific example, there are only two facts present: the
zero value— that represents a fact that is always valid, and used to
generate other data-flow facts— and the C fact— that is our data-
flow fact representing the cursor that is leaked. C is generated from
the zero value when c is acquired, and flows through getContact
until the end of getContactName since no release operation for
cursor was performed.

5Source code at https://github.com/felixb/smsdroid/blob/
5020594a25c7dd1d77b5e4571bce2135f4a17138/src/de/ub0r/android/smsdroid/
AsyncHelper.java and https://github.com/felixb/ub0rlib/blob/master/lib/src/main/java/
de/ub0r/android/lib/apis/ContactsWrapper3.java

4 EVALUATION
This section describes our evaluation methodology and the results
obtained. We address the two following research questions:
RQ1: How does our tool compare with other resource leak detec-
tors when considering the four types of resource leaks supported?
RQ2: Is our tool capable of finding new resource leaks?

4.1 Methodology
This subsection describes the datasets used, the data collection and
analysis procedures, and the experimental setup.

4.1.1 Resource Leak Dataset. To evaluate our work, we use Droi-
dLeaks [22]. The DroidLeaks dataset provides information on re-
source leaks found on 32 popular and large-scale open-source An-
droid applications, taken from F-Droid. The authors of DroidLeaks
collected a total of 292 resource leaks from 33 resource classes,
which include the 4 resource classes that our implementation cur-
rently supports: Cursor, SQLite Database, Wakelock, and Camera.

There is a publicly available website6 that contains all the infor-
mation about the dataset. From the available information, there is a
spreadsheet7 containing the 292 identified leaks together with their
relevant information: (1) name of the application where the leak
was found; (2) the concerned class, i.e. the resource class; (3) the
version of the application where the problem was discovered, and
the version where the problem was resolved; (4) the problematic
method, and the file where this method is implemented; (5) the bug
report, if it exists; (6) for the 8 evaluated resource leaks detectors,
whether they detected the resource leak or not; (7) information
regarding the leak: if it is related to component life cycle, if the
resource escapes local context, and the extent of the leak (complete
leak, only in certain paths, etc.).

Additionally, the authors of DroidLeaks provide the APKs used
in the evaluation they performed. There is a total of 137 APKs
publicly available8, including the versions where the leaks were
found and the versions where the leaks were fixed.

The authors of DroidLeaks also evaluated 8 resource leak de-
tectors— namely, Code Inspections, FindBugs, Infer, Android Lint,
PMD9, Relda2, Elite, and Verifier — with the dataset, with the goal
of helping future researchers to create and improve resource leak
detection tools. For the evaluation of each tool t, the authors defined
two metrics: the Bug Detection Rate, denoted 𝐵𝐷𝑅(𝑡), and the False
Alarm Rate, denoted 𝐹𝐴𝑅(𝑡). These are calculated as follows:

𝐵𝐷𝑅(𝑡) = # bugs detected by 𝑡 on buggy app versions
bugs experimented on 𝑡

𝐹𝐴𝑅(𝑡) = # false alarms reported by 𝑡 on patched app versions
bugs experimented on 𝑡

A detected leak happens when a tool detects one of the specified
leaks on the faulty version of the application. A false alarm happens
when a tool detects one of the specified leaks on the patched version
of the application (it should not detect since the leak is fixed).

6http://sccpu2.cse.ust.hk/droidleaks/
7http://sccpu2.cse.ust.hk/droidleaks/project_data/droidleaks.xlsx
8http://sccpu2.cse.ust.hk/droidleaks/bugs/apks.php
9No data is available for PMD since it does not support any type of system resource
covered by DroidLeaks.

https://github.com/felixb/smsdroid/blob/5020594a25c7dd1d77b5e4571bce2135f4a17138/src/de/ub0r/android/smsdroid/AsyncHelper.java
https://github.com/felixb/smsdroid/blob/5020594a25c7dd1d77b5e4571bce2135f4a17138/src/de/ub0r/android/smsdroid/AsyncHelper.java
https://github.com/felixb/smsdroid/blob/5020594a25c7dd1d77b5e4571bce2135f4a17138/src/de/ub0r/android/smsdroid/AsyncHelper.java
https://github.com/felixb/ub0rlib/blob/master/lib/src/main/java/de/ub0r/android/lib/apis/ContactsWrapper3.java
https://github.com/felixb/ub0rlib/blob/master/lib/src/main/java/de/ub0r/android/lib/apis/ContactsWrapper3.java
http://sccpu2.cse.ust.hk/droidleaks/
http://sccpu2.cse.ust.hk/droidleaks/project_data/droidleaks.xlsx
http://sccpu2.cse.ust.hk/droidleaks/bugs/apks.php

Extending EcoAndroid with Automated Detection of Resource Leaks MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA

Figure 6: Extended EcoAndroid report of a resource leak in the source code

Cursor cursor = getContact(...)

return cursor.getString(...)

final Uri uri = Uri.withAppendedPath(...)

final Cursor c = cr.query(...)

return c

0

call-to-return
edge

call edge

C

0 C

0

normal edge

C

0 C

0

return edge

C

0 C

resource leak in data-flow

control-flow edge

data-flow edge

Figure 7: Exploded super-graph for the example shown in Listing 2

4.1.2 Data Collection and Analysis. To answer the research ques-
tions, we divided our evaluation into two analyses: a filtered dataset
analysis and a full dataset analysis. The first addresses RQ1 and uses
a filtered version of DroidLeaks considering only the four types of
resource leaks supported. The second addresses RQ2 and uses the
entire DroidLeaks dataset.

Filtered dataset analysis. The authors of DroidLeaks evaluate
only 116 of the 292 resource leaks found, due to the labor-intensive
work of compiling all APKs found. From those 116 resource leaks,
only 60 are of one of the four types supported by our tool. However,
only 50 of these have been used in their experiments. We call the
dataset consisting of these 50 leaks the “filtered dataset”. Since
DroidLeaks provides data on the performance of other resource
leak detectors regarding these 50 leaks, we can use this dataset to
answer RQ1. For this comparison, we measure the Bug Detection
Rate and the False Alarm Rate. Table 1 shows, regarding the filtered
dataset, the number of leaks from each resource class, as well as
the applications where they were identified.

Full dataset analysis. To address RQ2, we run our analysis on
the 137 APKs provided by DroidLeaks and count the number of
previously unidentified leaks (i.e. leaks identified and confirmed by
us as true positives that are not listed in DroidLeaks).

We also measure three metrics: precision, recall, and F-Score [9].
Finally, regarding performance, we calculate the average and me-
dian time that our tool takes to analyze the provided applications.

Experimental setup. We ran our tool on an Intel i5-8265U (8
cores) machine, with 8GB of RAM running Ubuntu 18.04.5 LTS. The
process used to evaluate our tool is summarized below:

(1) Run our analysis in standalone mode on the 137 APKs from
DroidLeaks

(2) Collect and organize the obtained results into a spreadsheet

Resource class # leaks Related applications

Cursor 38

AnkiDroid, AnySoftKeyboard,
APG, BankDroid,
ChatSecure, CSipSimple,
Google Authenticator,
IRCCloud, Osmand,
OSMTracker, Owncloud,
SMSDroid, TransDroid,
WordPress

SQLiteDatabase 3
AnySoftKeyboard, ConnectBot,
FBReader

Wakelock 8
CallMeter, ConnectBot,
CSipSimple, K-9 Mail,

Camera 1 SipDroid

Table 1: Filtered dataset: distribution of resource classes

MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA Ricardo B. Pereira, João F. Ferreira, Alexandra Mendes, and Rui Abreu

(3) Compare the obtained results with the filtered dataset to
identify correctly detected leaks and non-detected leaks (i.e.
true positives and false negatives, respectively).

(4) Manually categorize the remaining results (i.e. the results
obtained and not described in the filtered dataset)

(5) Calculate the analysis’ detection rate and compare with the
tools evaluated in DroidLeaks, from the filtered dataset

(6) Calculate the remaining efficiency metrics — precision, recall,
and F-Score— for the full dataset analysis and false negatives
obtained from DroidLeaks

(7) Calculate performance metrics— average and median dura-
tion of the analysis — for the full dataset analysis.

4.2 Results
4.2.1 Errors in the Analysis. From the 137 APKs provided by Droi-
dLeaks, our analysis failed to run on 30 due to call graph generation
failure in Soot and FlowDroid. We define a call graph generation
failure as the failure to generate a call graph in under 5 minutes.
The applications suffering from this failure and their versions are
shown in Table 2. For these applications, our analysis is unable to
run and detect resource leaks. Regarding evaluation on the filtered
dataset, this means that the cursor leak on version 1747b81da8 of
BankDroid can not be evaluated, but will be accounted in our eval-
uation as a call graph generation failure. Regarding the full dataset
analysis, this means that we only consider 107 out of the 137 APKs
provided by DroidLeaks.

4.2.2 Filtered Dataset Analysis. For the 50 resource leaks in the
filtered dataset, our tool was able to detect 9 (18%), while failing to
detect the remaining 41 (82%), meaningwe achieved a BugDetection
Rate of 18% and a False Alarm Rate of 2%. We have investigated
the cause of these results and observed that, for the 41 that our
tool failed to detect, the main reason is due to Soot and Heros
not analyzing the method where the resource was leaked, which
happened in 25 (61%) of the leaks. Table 3 shows the causes for
failure to detect the leaks in the filtered dataset, together with their
corresponding number of cases (percentage is calculated based on

Application Versions

K-9 Mail

0a07250417, 0e03f262b3, 1596ddfaab,
2df436e7bc, 3077e6a2d7, 3171ee969f,
378acbd313, 57e55734c4, 58efee8be2,
71a8ffc2b5, 7e1501499f, acd18291f2

Cgeo
23bf7d5801, 253c271b34, 8987674ab4
e2c320b5f9, ea04b619e0, fb2d9a3a57

BankDroid
1747b81da8, 265504aa4, 2b0345b5c2,
bf136c7b0a, f4fbbfd966

Ushahidi
337b48f5f2, 52525168b5, 9d0aa75b84,
d578c72309

ConnectBot 2dfa7ae033, ef8ab06c34
CallMeter 4e9106ccf2

Table 2: Applications where the generation of call graphs
failed

Cause for failing to detect # of cases % of cases

Method not analyzed 25 61%
Logic not supported 8 20%
Unresolved bug in tool 5 12%
Call graph generation failure 1 2%
Call graph generation error 1 2%
Unknown cause 1 2%

Total 41 100%

Table 3: Causes for failing to detect leaks in filtered dataset

only the 41 leaks our tool failed to detect, and does not account for
100% due to approximation errors).

As mentioned before, the authors of DroidLeaks performed an
evaluation of 8 resource leak detectors using their dataset. Table 4
shows how the tools evaluated in DroidLeaks and our tool (named
EcoAndroid) performed on the filtered dataset. Note that Relda2
supports two analysis modes: flow-sensitive and flow-insensitive.
In the table, Relda2-FS and Relda2-FI represent the two modes,
respectively. Also, FindBugs is not included in the table since there
is no data available about this tool for the leaks in the filtered
dataset. All the 9 leaks detected by EcoAndroid are also detected by
at least one other tool; however, there is no other tool that detects
all of these 9 leaks.

Answer to RQ1. How does our tool compare with other
resource leak detectors when considering the four types of
resource leaks supported?
While the bug detection rate of our tool can improve substantially,
the false alarm rate is among the best (only Android Lint is better).
We noticed that the main problem is with Soot and Heros not
analyzing methods where resources are leaked. Further work to
fix this single problem can have a big impact on the performance
of our tool.

4.2.3 Full Dataset Analysis. Given the errors mentioned above,
we analyzed a total of 107 APKs. Our tool reported a total of 312
leaks, from which 203 (65%) are true positives, 77 are false positives
(25%), 27 (9%) were not classified due to missing code in the applica-
tion’s repository and due to the leak being reported in an Android
class, and 5 (1%) suffered from errors in the Jimple translation. We
obtained a precision of 72.5%, a recall (with the number of false
negatives calculated using information from the filtered dataset) of
83.2%, and an F-Score of 77.5%.

We observed that some of the reported leaks were duplicated in
different versions of the same application. This phenomenon can be
seen, for example, in WordPress: in four versions of this application
(57c0808aa4, 4b1d15cb26, 42de8a232c, and 3f6227e2d4) we have
uncovered several identical reported leaks. Since this happens in
several applications, we decided to also present the results of our
tool taking into account only unique reported leaks. In this case,
our tool reported 127 leaks, from which 86 (67.7%) are true positives,
28 (22%) are false positives, 9 (7.1%) were unclassified, and 4 (3.1%)
suffered errors in the Jimple translation. For the unique reported
leaks, we obtained a precision of 75.4%, a recall (with the number

Extending EcoAndroid with Automated Detection of Resource Leaks MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA

Tool # experimented leaks
detected leaks
(Bug Detection Rate)

false alarms
(False Alarm Rate)

EcoAndroid 50 9 (18.0%) 1 (2.0%)
Code Inspections 41 32 (78.0%) 19 (46.3%)
Infer 38 23 (60.5%) 2 (5.3%)
Lint 38 12 (31.6%) 0 (0.0%)
Relda2-FS 9 7 (77.8%) 7 (77.8%)
Relda2-FI 9 3 (33.4%) 2 (22.2%)
Elite 8 7 (87.5%) 5 (62.5)
Verifier 8 4 (50.0%) 3 (37.5%)

Table 4: Filtered dataset analysis: tool performance

Full reported
leaks

Unique reported
leaks

Total apps analyzed 107 107

Number of leaks reported 312 127
Unclassified leaks 27 9
Errors 5 4
True positives (TP) 203 86
False positives (FP) 77 28
False negatives (FN) 41 (from filtered dataset)

Precision 0.725 0.754
Recall 0.832 0.677
F-Score 0.775 0.714

Table 5: Results obtained from the full dataset analysis

of false negatives calculated using information from the filtered
dataset) of 67.7%, and an F-Score of 71.4%. Table 5 summarizes the
results obtained. Notice that these results indicate that our tool
detected 191 previously unidentified leaks (74 when considering
unique reported leaks). This is because the 203 true positives de-
tected by EcoAndroid include the 9 leaks that were detected in the
filtered dataset. Note that the 50 leaks in the filtered dataset are
the only ones identified in DroidLeaks as leaks of the four types
supported by EcoAndroid. Therefore, the 191 leaks detected further
to the 9 leaks of the filtered dataset where not identified before.
Moreover, there are 3 leaks detected by EcoAndroid for which there
is no data regarding other tools.

Table 6 shows the results obtained from the full dataset analysis,
from both all reported leaks and unique reported leaks, but catego-
rized by each resource. Percentages in each column are calculated
based on the sum of their respective column.

To evaluate the performance of our tool, we recorded the time it
took to setup and run the analysis. To setup the analysis, our tool
took, on average, 43941 milliseconds and, on median, 20577 millisec-
onds. To run the analysis it took, on average, 3520 milliseconds and,
on median, 3869 milliseconds. Table 7 shows these recorded times,
as well as total time, presented in milliseconds and in minutes.

Answer to RQ2. Is our tool capable of finding new resource
leaks?
Yes, our tool found 191 resource leaks previously unidentified in
DroidLeaks (74 when considering unique reported leaks). Most of
the resource leaks identified concern the use of Cursor and SQLite
Database resources. Concerning the Camera resource, there were
no resource leaks found.
We obtained a precision of 72.5%, a recall (with the number of
false negatives calculated using information from the filtered
dataset) of 83.2%, and an F-Score of 77.5%. When considering
unique reported leaks, these values changed to 75.4%, 67.7%, and
71.4%, respectively.

5 RELATEDWORK
Jiang et al. [20] list typical energy bugs, divided into resource leaks
(also called no-sleep bugs) and layout defects. Pathak and Jindal [27]
divide no-sleep bugs into three categories: no-sleep code path (i.e.
when there is a code path that acquires a component wakelock,
but never releases), no-sleep race condition (i.e. when the power
management of a particular component is carried out by different
threads in the application), and no-sleep dilation (i.e. when a com-
ponent is put to sleep later than necessary). Cruz and Abreu [13]
present 22 energy patterns for Android applications, with some
involving resource leaks.

Regarding leak detectors, Vekris et al. [32] created a tool to verify
if an Android application complies with a set of energy policies,
focused only on the acquiring and releasing of wakelocks. Guo et
al. [19] created Relda, which uses Androguard to translate the appli-
cation APK into Dalvik bytecode. The bytecode is then traversed in
sequential order to build the control-flow graph of the application.
Wu et al. [36] present Relda2, which unlike most tools that are
built on top of frameworks like Soot and WALA, analyzes Dalvik
bytecode directly, leveraging only Androguard to disassemble the
app into the Dalvik bytecode. The Automated Android Energy-
Efficiency InspectiON (AEON) [30] is an IntelliJ IDEA plugin capa-
ble of inspecting energy problems related to the Android API. The
plugin focuses on wakelocks. AEON was used in the work of Deng
et al. [14] to design the WakeLock Release Deletion mutation opera-
tor, used to mimic an energy bug. Wu et al. [35] detect two patterns
related to resource leaks: activity adding a listener but not removing
it, and activity adding a listener but putting it in a long-wait state.

MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA Ricardo B. Pereira, João F. Ferreira, Alexandra Mendes, and Rui Abreu

Resource
Full reported leaks Unique reported leaks

Total (%) TP (%) FP (%) Total (%) TP (%) FP (%)

Cursor 165 (53%) 108 (53%) 42 (55%) 63 (50%) 40 (47%) 14 (50%)
SQLite Database 114 (37%) 90 (44%) 20 (26%) 51 (40%) 43 (50%) 6 (21%)
Wakelock 31 (9%) 5 (3%) 13 (17%) 12 (9%) 3 (3%) 7 (25%)
Camera 2 (1%) 0 (0%) 2 (2%) 1 (1%) 0 (0%) 1 (4%)

Sum 312 203 77 127 86 28

Table 6: Results obtained from the full dataset analysis, organized per resource

Setup Analysis Total

Average time (ms) 43941 3520 47461
Median time (ms) 20577 3869 24356

Average time (min) 0.73235 0.05866 0.79102
Median time (min) 0.34295 0.06448 0.40593

Table 7: Time performance of the analysis

Liu et al. [24] created a technique called Elite capable of detecting
common wakelock misuses. Elite first decompiles the application’s
APK files to Java bytecode using Dex2jar, and then performs an
analysis with the help of Soot and Apache Byte Code Engineering
Library (BCEL). Jiang et al. [20] built a tool called SAAD. They use
Apktool to transform the APK file into Dalvik bytecode, using then
SAAF, an analysis framework, to search for resource leaks, and
Android Lint, to search for layout defects. Banerjee et al. [4] expand
on their previous work [5] and create a framework for detecting
resource leaks and implement it into an Eclipse plugin called Ener-
gyPatch. More recently, Bhatt and Furia [6] implement PlumbDroid,
which builds several resource-flow graphs (an abstraction based on
control-flow graphs) that captures information about the acquir-
ing and releasing of resources. The tool performs intra-procedural
analysis using pushdown automatons, and inter-procedural analy-
sis by combining the results of the intra-procedural analysis. In a
final stage, it fixes the resource leak by injecting the corresponding
release operation in a suitable location.

When compared to the above work, our analysis is the only
IFDS-based resource leak analysis that supports multiple Android
resources.

6 CONCLUSION
This paper presents an extension of EcoAndroid with automated
detection of resource leaks in Android applications. We designed
and implemented a context- and flow-sensitive inter-procedural
static analysis with the IFDS framework. Our analysis supports the
detection of leaks regarding four frequently used and impactful
Android resources, and can be run as part of EcoAndroid, in IntelliJ
IDEA or Android Studio, or as a command-line tool. When using
our tool to analyze 107 Android applications from the DroidLeaks
dataset, we have been able to detect 191 previously undetected leaks.
Our analysis achieved a low Bug Detection Rate due to problems

in the frameworks used, but our False Alarm Rate was one of the
best when comparing to the 8 resource leak detectors evaluated in
DroidLeaks. We also obtained a precision of 72.5% and a recall of
83.2% when evaluating the leaks detected in the 107 applications
provided by DroidLeaks.

6.1 Future Work
Improve the use of the static analysis frameworks. While static

analysis frameworks like Soot and Heros provide tools to build
static analyses, it might not be trivial to implement analyses that
work for all cases. For example, in our extension we observed that
Soot’s and FlowDroid’s call graph generation can sometimes fail,
which makes it impossible to run our analysis. Another problem
that we observed is that some generated call graphs were incorrect
(e.g., they were incomplete and did not contain the method where
the resource leak occurred). When this happens it is still possible to
run the analysis but this can cause false positives or false negatives.
As the next step, we plan to improve this and fix this problem.

Support diverse mechanisms used by resources. Throughout test-
ing and evaluation of our analysis, we uncovered that, for the
resources supported, many possess different kinds of mechanisms
that affect how they are acquired and released. For example, the
ContentQueryMap is such a mechanism and it is used to cache the
contents of a cursor into a map. It works by passing the cursor to
the ContentQueryMap constructor, performing all the operations
needed, and then closing the ContentQueryMap [18]. We plan to
improve our tool to take into account as many of these mechanisms
as possible.

Repair of resource leaks through refactoring. A useful improve-
ment to our work would be to automatically repair the detected
leaks through refactoring. This would require a careful analysis of
where to release each resource, so that the refactoring would not
impact the rest of the application. The same mechanism used in
EcoAndroid to refactor energy patterns could be used.

User study. Since our tool can run as part of EcoAndroid, we plan
to perform a user study to assess the usability of our extension and
to collect feedback that can be used to improve our work.

ACKNOWLEDGMENTS
This work was partially funded by national funds through FCT
under projects UIDB/50021/2020 and PTDC/CCI-COM/29300/2017.

Extending EcoAndroid with Automated Detection of Resource Leaks MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA

REFERENCES
[1] Shaukat Ali, Shah Khusro, Azhar Rauf, and Saeed Mahfooz. 2014. Sensors and

mobile phones: evolution and state-of-the-art. Pakistan journal of science 66, 4
(2014), 385.

[2] Appbrain. 2022. Number of Android apps on Google Play. https://www.appbrain.
com/stats/number-of-android-apps. Accessed: 01-02-2022.

[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

[4] Abhijeet Banerjee, Lee Kee Chong, Clément Ballabriga, and Abhik Roychoudhury.
2017. Energypatch: Repairing resource leaks to improve energy-efficiency of
android apps. IEEE Transactions on Software Engineering 44, 5 (2017), 470–490.

[5] Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay, and Abhik Roychoud-
hury. 2014. Detecting energy bugs and hotspots in mobile apps. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering. 588–598.

[6] Bhargav Nagaraja Bhatt and Carlo A Furia. 2020. Automated Repair of Resource
Leaks in Android Applications. arXiv preprint arXiv:2003.03201 (2020).

[7] Eric Bodden. 2012. Inter-procedural data-flow analysis with IFDS/IDE and Soot.
In Proceedings of the ACM SIGPLAN International Workshop on State of the Art in
Java Program analysis. 3–8.

[8] Antonin Carette, Mehdi Adel Ait Younes, Geoffrey Hecht, Naouel Moha, and
Romain Rouvoy. 2017. Investigating the energy impact of android smells. In 2017
IEEE 24th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER). IEEE, 115–126.

[9] Center for Assured Software. 2011. CAS Static Analysis Tool Study - Methodology.
Technical Report. National Security Agency, 9800 Savage Road Fort George G.
Meade, MD 20755-6738.

[10] Melissa Chau and Ryan Reith. 2020. Smartphone market share. https://www.idc.
com/promo/smartphone-market-share/os. Accessed: 19-12-2020.

[11] J Clement. 2021. Number of available applications in the Google Play Store
from December 2009 to September 2020. https://www.statista.com/statistics/
266210/number-of-available-applications-in-the-google-play-store/. Accessed:
01-02-2022.

[12] Marco Couto, João Saraiva, and João Paulo Fernandes. 2020. Energy Refactor-
ings for Android in the Large and in the Wild. In 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
217–228.

[13] Luis Cruz and Rui Abreu. 2019. Catalog of energy patterns for mobile applications.
Empirical Software Engineering 24, 4 (2019), 2209–2235.

[14] Lin Deng, Jeff Offutt, and David Samudio. 2017. Is mutation analysis effective at
testing android apps?. In 2017 IEEE International Conference on Software Quality,
Reliability and Security (QRS). IEEE, 86–93.

[15] Google. 2021. Android fundamentals 02.2 - Activity lifecycle and state.
https://developer.android.com/codelabs/android-training-activity-lifecycle-
and-state#0. Accessed: 01-02-2022.

[16] Google. 2021. Application Fundamentals - Android Developers. https://developer.
android.com/guide/components/fundamentals. Accessed: 01-02-2022.

[17] Google. 2021. Understanding the Application Lifecycle - Android Devel-
opers. https://developer.android.com/guide/components/activities/activity-
lifecycle. Accessed: 01-02-2022.

[18] Google. 2022. Android Reference - Content QueryMap. https://developer.android.
com/reference/android/content/ContentQueryMap. Accessed: 01-02-2022.

[19] Chaorong Guo, Jian Zhang, Jun Yan, Zhiqiang Zhang, and Yanli Zhang. 2013.
Characterizing and detecting resource leaks in Android applications. In 2013 28th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 389–398.

[20] Hao Jiang, Hongli Yang, Shengchao Qin, Zhendong Su, Jian Zhang, and Jun Yan.
2017. Detecting energy bugs in Android apps using static analysis. In International
Conference on Formal Engineering Methods. Springer, 192–208.

[21] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre
Bartel, Damien Octeau, Jacques Klein, and Le Traon. 2017. Static analysis of
android apps: A systematic literature review. Information and Software Technology
88 (2017), 67–95.

[22] Yepang Liu, Jue Wang, Lili Wei, Chang Xu, Shing-Chi Cheung, Tianyong Wu, Jun
Yan, and Jian Zhang. 2019. DroidLeaks: a comprehensive database of resource
leaks in Android apps. Empirical Software Engineering 24, 6 (2019), 3435–3483.

[23] Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing and detect-
ing performance bugs for smartphone applications. In Proceedings of the 36th
International Conference on Software Engineering (ICSE). 1013–1024.

[24] Yepang Liu, Chang Xu, Shing-Chi Cheung, and Valerio Terragni. 2016. Under-
standing and detecting wake lock misuses for android applications. In Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. 396–409.

[25] David Lo, Nachiappan Nagappan, and Thomas Zimmermann. 2015. How Practi-
tioners Perceive the Relevance of Software Engineering Research. In Proceedings

of the 2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo,
Italy) (ESEC/FSE 2015). Association for Computing Machinery, New York, NY,
USA, 415–425. https://doi.org/10.1145/2786805.2786809

[26] S O’Dea. 2020. Number of smartphone users worldwide from 2016 to
2021. https://www.statista.com/statistics/330695/number-of-smartphone-users-
worldwide. Accessed: 19-12-2020.

[27] Abhinav Pathak, Abhilash Jindal, Y Charlie Hu, and Samuel P Midkiff. 2012. What
is keeping my phone awake? Characterizing and detecting no-sleep energy bugs
in smartphone apps. In Proceedings of the 10th international conference on Mobile
systems, applications, and services. 267–280.

[28] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural
dataflow analysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 49–61.

[29] Ana Ribeiro, João F. Ferreira, and Alexandra Mendes. 2021. EcoAndroid: An
Android Studio Plugin for Developing Energy-Efficient Java Mobile Applications.
In 2021 IEEE 21st International Conference on Software Quality, Reliability and
Security (QRS). 62–69. https://doi.org/10.1109/QRS54544.2021.00017

[30] David Samudio. 2016. Automated Android Energy-Efficiency Inspec-
tiON. https://plugins.jetbrains.com/plugin/7444-aeon-automated-android-
energy-efficiency-inspection/.

[31] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 2010. Soot: A Java bytecode optimization framework. In
CASCON First Decade High Impact Papers. 214–224.

[32] Panagiotis Vekris, Ranjit Jhala, Sorin Lerner, and Yuvraj Agarwal. 2012. Towards
verifying android apps for the absence of no-sleep energy bugs. In Presented as
part of the 2012 Workshop on Power-Aware Computing and Systems.

[33] Jingtian Wang, Guoquan Wu, Xiaoquan Wu, and Jun Wei. 2012. Detect and
optimize the energy consumption of mobile app through static analysis: an initial
research. In Proceedings of the Fourth Asia-Pacific Symposium on Internetware.
1–5.

[34] Claas Wilke, Sebastian Richly, Sebastian Götz, Christian Piechnick, and Uwe
Aßmann. 2013. Energy consumption and efficiency in mobile applications: A
user feedback study. In 2013 IEEE International Conference on Green Computing
and Communications and IEEE Internet of Things and IEEE Cyber, Physical and
Social Computing. IEEE, 134–141.

[35] Haowei Wu, Shengqian Yang, and Atanas Rountev. 2016. Static detection of
energy defect patterns in Android applications. In Proceedings of the 25th Inter-
national Conference on Compiler Construction. 185–195.

[36] Tianyong Wu, Jierui Liu, Xi Deng, Jun Yan, and Jian Zhang. 2016. Relda2: an
effective static analysis tool for resource leak detection in Android apps. In 2016
31st IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 762–767.

[37] Tianyong Wu, Jierui Liu, Zhenbo Xu, Chaorong Guo, Yanli Zhang, Jun Yan, and
Jian Zhang. 2016. Light-weight, inter-procedural and callback-aware resource
leak detection for Android apps. IEEE Transactions on Software Engineering 42,
11 (2016), 1054–1076.

https://www.appbrain.com/stats/number-of-android-apps
https://www.appbrain.com/stats/number-of-android-apps
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://developer.android.com/codelabs/android-training-activity-lifecycle-and-state#0
https://developer.android.com/codelabs/android-training-activity-lifecycle-and-state#0
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/reference/android/content/ContentQueryMap
https://developer.android.com/reference/android/content/ContentQueryMap
https://doi.org/10.1145/2786805.2786809
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide
https://doi.org/10.1109/QRS54544.2021.00017
https://plugins.jetbrains.com/plugin/7444-aeon-automated-android-energy-efficiency-inspection/
https://plugins.jetbrains.com/plugin/7444-aeon-automated-android-energy-efficiency-inspection/

	Abstract
	1 Introduction
	2 Background
	2.1 Android Architecture
	2.2 Resource Leaks
	2.3 EcoAndroid
	2.4 Analysis Tools

	3 Resource Leak Detection
	3.1 Resource and Leak Representation
	3.2 Analysis Component
	3.3 Results Component
	3.4 Illustrative example

	4 Evaluation
	4.1 Methodology
	4.2 Results

	5 Related Work
	6 Conclusion
	6.1 Future Work

	Acknowledgments
	References

