
GAMFLEW:

Serious game to teach white-box testing

Mateus Silva 1†, Ana C. R. Paiva 2*†, Alexandra Mendes 2†

1Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias,
s/n, Porto, 4200-465, Portugal.

1INESC TEC, Faculty of Engineering, University of Porto, Rua Dr.
Roberto Frias, s/n, Porto, 4200-465, Portugal.

*Corresponding author(s). E-mail(s): apaiva@fe.up.pt;
Contributing authors: up201906232@up.pt; afmendes@fe.up.pt;

†These authors contributed equally to this work.

Abstract

Software testing plays a fundamental role in software engineering, involving the
systematic evaluation of software to identify defects, errors, and vulnerabilities
from the early stages of the development process. Education in software testing
is essential for students and professionals, as it promotes quality and favours the
construction of reliable software solutions. However, motivating students to learn
software testing may be a challenge. To overcome this, educators may incorporate
some strategies into the teaching and learning process, such as real-world exam-
ples, interactive learning, and gamification. Gamification aims to make learning
software testing more engaging for students by creating a more enjoyable experi-
ence. One approach that has proven effective is to use serious games. This paper
presents a novel serious game to teach white-box testing test case design tech-
niques, named GAMFLEW (GAMe For LEarning White-box testing). It describes
the design, game mechanics, and its implementation. It also presents a prelimi-
nary evaluation experiment with students to assess the usability, learnability, and
perceived problems, among other aspects. The results obtained are encouraging.

Keywords: Software testing, Software engineering, Serious games, White-box testing,
Computer science education

1

https://orcid.org/0009-0007-1213-8663
https://orcid.org/0000-0003-3431-8060
https://orcid.org/0000-0001-8060-5920

1 Introduction

Software testing is a crucial activity within software engineering. However, teaching
software testing is challenging as it encompasses many theoretical concepts, requires
hands-on practice in a properly set-up environment, and is a constantly evolving
knowledge area.

With rapid advances in technology and science, a traditional classroom environ-
ment may seem uninteresting to students. This calls for novel approaches that increase
students’ motivation while keeping them engaged in learning new and challenging
concepts. Some examples may be the flipped classroom model, using open-source soft-
ware in programming projects (with its potential real-life impact), incorporating social
interactions into a classroom tool or environment, and gamification.

Gamification is based on integrating game-like elements — such as score, rankings,
and badge collection — into student activities to increase their engagement. Serious
games incorporate these elements into their structure to provide educational value in
addition to entertainment while motivating students to learn. Serious games have been
applied to teaching software testing presenting positive results in increasing student
engagement [1]. However, existing serious games may not have covered all software
testing concepts [2–9].

This paper describes the design, mechanics, and implementation of a new serious
game, GAMFLEW (GAMe For LEarning White-box testing), that is being developed
in the context of the European project ENACTEST1 — European Innovation Alliance
for Testing Education [10, 11]. GAMFLEW features novel ideas, including a single-
player mode that introduces an entirely new way to define test cases (more precisely,
the test input data needed to achieve a code coverage goal), and a process that allows
teachers to add more challenges for students to solve. Other innovative features are
the ability for students to submit comments that clarify their rationale for solving
challenges and incorporating peer review.

This paper is structured as follows: Section 2 describes past research on gamifi-
cation and existing serious games for teaching software testing. Section 3 describes a
novel serious game, GAMFLEW, covering learning goals, its mechanics, architecture,
and content. Section 4 presents the validation user study performed with students,
followed by conclusions and future work in Section 5.

2 Related Work

The following sections cover related work exploring gamification-adjacent approaches
and techniques, followed by existing serious games for teaching software testing topics.

2.1 Gamification

Ramasamy et al. [12] studied students’ reactions to a Web-Based Repository of
Software Testing Tutorials (WReSTT) supporting collaborative learning. WReSTT
includes social networking features that encourage student interactions in testing by
awarding points. One observation from the study was the frustration of students who

1http://enactest-project.eu/

2

http://enactest-project.eu/

had difficulty designing appropriate test cases when receiving penalties. This hap-
pened as students lacked instruction in testing methodologies and techniques, which
was resolved using the Software Engineering and Programming Cyberlearning Envi-
ronment (SEP-CyLE), a component of WReSTT. Students recognized that software
testing knowledge positively impacted their programming skills and that SEP-CyLE
was an excellent support for acquiring that knowledge, which was visible in the
improvement of scores. The authors finally concluded that software testing knowl-
edge allowed students to quickly move programming practices into working memory
on demand when it was applied gradually.

In 2019, Ferreira Costa and Bezerra Oliveira [13] introduced exploratory testing
in teaching. The approach focused on the design and execution of tests in a free,
concurrent manner, and incrementally builds on past exploration. The authors defined
a syllabus for undergraduate courses in computer science, including some elements of
gamification: free lunch (granting a prize for reaching a goal), achievement medals,
progress bars, and group quests, among others. In collaboration with experts through
peer reviews, an evaluation identified some necessary changes to be implemented. The
approach followed work on a gamified framework inspired by a pirate theme, which,
when run on an experiment with students, yielded over 70% of success [14].

Elgrably and Oliveira [15] also applied gamified competition mixed with agile
testing principles in a software quality course. Students learned about test-driven
development and were attributed points in activities associated with case stud-
ies. Results report satisfactory to very satisfactory student performance while also
unanimously pointing towards a positive outlook on using gamification to address
motivation. The use of penalties (for example, for using mobile devices during class)
is highlighted as a way to keep students’ attention.

Gomes and Lelli [16] created a game-based learning approach called GAMUT
(GAMe-Based Learning Approach for Teaching Unit Testing), designed around a nar-
rative of monster-fighting in the Middle Ages. The game is inspired by Mastermind
and is made to be played individually. It introduces the given-when-then method,
related to unit testing and white-box testing, in a trial-and-error fashion. Students
then performed practical activities based on the challenges played in the game. While
some issues are reported by the authors, namely that students experience difficulties
understanding some concepts, they do believe the approach successfully provided an
experience that was not merely theoretical and introduced complex techniques to stu-
dents. Students reacted very positively to the approach and the dynamic it introduced
in classes.

The impact of gamification on software testing education was analysed by de Jesus
et al. [17]. Two groups of students were evaluated using quizzes, where one group
had access to a gamified environment for their learning. Motivation was higher among
students who used gamified techniques. Results were negative regarding performance,
but student feedback proved that gamification helped capture the students’ attention
and appreciation.

2.2 Existing Serious Games

Some serious games have been developed to help in teaching software testing concepts.

3

Clegg et al. [2] developed Code Defenders, which incorporates the main activities of
mutation testing (as per the paper: “creating mutants, killing mutants [and] checking
mutant equivalence”). The game features an attacker and defender mode — simply
put, an attacker creates mutants for the defender to try to kill. However, defenders can
claim equivalence of a mutant, forcing the attacker to either forfeit or write a test case
that kills it and disproves equivalence. The most distinguished feature of the game is its
competitive loop; just one pair of players creates a “cat-and-mouse” game experience
between players who fight to get the highest score and win the game. The authors
propose different strategies to use the game in a testing curriculum and propose ideas
to teach concepts, such as statement coverage, branch coverage, and dataflow testing.

In a later preliminary report on the application of Code Defenders in a software
testing course, Fraser et al. [3] used a classroom environment to see how students
reacted. The authors addressed scaling, which allowed for dealing with 120 students,
and created an administrative interface. Students of equal ability were grouped, and
the authors acted as monitors of the gaming sessions, motivating students to play by
participating in the games themselves. Certain measures were taken to prevent players
from unfairly manipulating game mechanics. According to the authors’ observations,
the game succeeded in engaging students at all levels, and students often debated
beyond the time limits of sessions. The scores proved very enticing for students, who
tried to boost theirs using “dubious game strategies”. The authors also point out some
potential difficulties for struggling students, which may inform changes in gameplay.
Furthermore, finding the right code complexity for both player roles is quite hard,
along with keeping student engagement by scaling the complexity and challenge of the
game throughout the semester. Overall, the conclusions are very positive.

Another example that is less focused on competition is TestEG, by Oliveira et al.
[4], which creates a simulated environment of a software testing team as a “Test Man-
ager.” Players have a budget to appropriately spend on training their team. The game’s
most distinguishable features are the possibility for an educator to interact with the
game in a controlled manner (by managing player authentication and adding questions
that teams can present) and the RPG2 nature of the game, with 3D environments
and character selection as exemplary features.

Soska et al. [5] developed an experimental card game with their efforts focused on
a framework based on constructivism — which states knowledge grows via a “process
of active construction”, as per Mascolo [18] — and the theoretical content of the
ISTQB (International Software Testing Qualifications Board) [19] foundation level.
Players used cards based on Magic: The Gathering. The game was mostly theoretical
and covered concepts and explanations, which could be played solo or competitively,
resembling studying flashcards. The gameplay allowed students to share their task
solutions and work collaboratively, which was very valuable in the learning process. In
the end, students agreed that the game allowed them to gain new insights and findings
about software testing content and deepen their knowledge.

Fraser [6] researched gamification in programming education, highlighting the
potential for its inclusion in software testing, and analysed several games, including:

2Role-playing game.

4

CodeHunt [20], an online game focused on coding but that is related to testing, as play-
ers test their written code by comparing its performance to a test suite; CodinGame
[21], which is similar to CodeHunt, allowing players to check their code against tests;
and CodeDefenders. The author points out how gamification can be leveraged to better
engage students with testing, mentioning examples like Bug Hunt [22] (which applies
different testing techniques) and the use of storylines and quests by Bell et al. [23].
Another interesting example is that of CodeFights [24], whose sole purpose is recruit-
ment through directed courses in different topics (since companies may pay to be in
contact with top players)3, and once again involves tests. Testing games may also be
made with a purpose in mind, like crowd-sourced testing of mobile and web apps —
for example, Logas et al. [25] gamified the process of summarizing loops in Xylem.

Valle et al. [7] similarly covered educational games and developed their own testing
game, named Testing Game. The game addressed functional, structural, and defect-
based testing. Each of these techniques had a set of different stages, which may vary
from combat-based gameplay (“[...] they must eliminate the enemies and the invalid
vectors.”) to gameplay resembling the solving of worksheet exercises (“[...] students
must observe the Def-Use graph of the Bubble Sort program and fill in a table that
demonstrates in which nodes of the graph the variables were defined.”). The authors
covered the quality and usability of the game with the collaboration of students: 86.6%
positively evaluated the motivation gained from playing the game, 87.7% of students
enjoyed the user experience, and 82.23% of students positively considered the game’s
learning factor.

Ribeiro and Paiva [8] presented a serious game for teaching software testing, iLearn-
Test. This game is different from previous games, such as U-TEST [26], Bug Hunt, and
TestEG : U-TEST only covers black-box and unit testing; Bug Hunt is relatively short,
being comprised of only five classes4; and TestEG is a simple quiz game. iLearnTest,
however, covers ISTQB topics and may be used to help study for this certification
while adding gameplay challenges to captivate users to learn: platforming, (Hang-
man-like) concept guessing, concept separation, path-finding and, ultimately, quizzes.
When applied in a teaching context, students who used the game to study performed
better in a multiple choice questions exam than those who did not5.

For a different experience, Materazzo et al. [9] developed an app called Unit Brawl,
inspired by the battle royale genre with only one winner. In the developed app, students
are against their colleagues — beyond receiving a point whenever their submissions
are admissible by the app, students gain points whenever their written tests (which
pass on their code) fail on another student’s code and whenever other students’ tests
pass on their code. The game features a leaderboard and avatars, where accumulated
points can be converted into avatar customization items. Competition is named the
main drive of the app. A preliminary evaluation of the app showed that it behaved
consistently with the authors’ expectations. Still, a thorough evaluation within an
object-oriented programming course is stated as immediate future work.

3When accessing the website provided, we are redirected to “CodeSignal,” assumed to be a rebranding
of the mentioned game.

4Perceived as levels.
5Paraphrased from author translation. Pages 1 and 3-6.

5

Many serious games aim to teach software testing concepts. To our knowledge,
only two explicitly name white-box testing in their description [4, 7]. More than once,
ISTQB [19] is used or cited as a standard for the content of a serious game [5, 8].

GAMFLEW aims to teach white-box testing concepts, allowing teachers to adapt
game content to the needs of their students. It differs from previous work by integrating
features for both students (the challenges) and teachers (for designing the challenges).
Some features include an interactive way that allows students to build the test cases
for overcoming challenges and the possibility for teachers to monitor their students’
learning and evaluate them more closely via students’ submitted comments.

3 GAMFLEW

GAMFLEW is a serious game for teaching white-box test case design techniques,
where students define the test input data needed to achieve code coverage objectives
defined in challenges. Five different code coverage concepts are featured.

A challenge encompasses a snippet of code to analyze, the code coverage objective
to achieve — such as “decision coverage of line N” — , and a Checkers board to
define the test inputs. The game encourages users to interpret the code snippets in
order to pass the challenge with the right combination of board interactions.

To check if a challenge was passed, all moves made on the board are verified by
the game. This may include piece movements, adding or removing pieces, and piece
coordinates. Players have more freedom of movement than in a game of Checkers as,
for example, they can move pieces outside the boundaries of the board. The challenges
also feature hints to help struggling users.

Players get rewarded with points after submitting an attempt and commenting on
it — in a way, to “show their work”. Submitting the comment generates a score and
logs relevant statistics of their gameplay, shown in real time in the game’s interface
and accessible by the teachers.

Beyond the two sets of challenges provided for players as base content, special
teacher-exclusive features allow teachers to edit and manage the challenge catalog by
adding new challenges. Teachers may also play any challenge in the game, or check
player submissions and performance if they wish to.

3.1 Description

This Section describes GAMFLEW (concepts taught, goals, game elements, rules and
teachers-exclusive features) while the following section (3.2) gives details about its
implementation.

3.1.1 Code Coverage Concepts

The following white-box testing criteria are featured in GAMFLEW :
• Statement coverage: the extent to which lines of code are executed by test cases.
• Decision coverage: the extent to which decisions (both True and False outcomes)
are executed by the test cases.

• Condition coverage: the extent to which conditions (both True and False values)
are executed by test cases.

6

• Condition-decision coverage: both condition and decision coverage.
• Modified Condition Decision coverage: the extent to which test cases exercise
Boolean conditions inside decisions independently affecting the decision outcome
while covering all possible Boolean values of the conditions.

3.1.2 Objectives

The game is structured around challenges, which are overcome by a variable number
of test cases, e.g., statement coverage needs one test case while decision coverage needs
two.

A test case is built by interacting with the board, an 8x8 grid. Required interactions
may be described as plays from Checkers — moving a piece or making a King, for
example — , but there are additional possible movements — e.g., moving pieces out
of bounds or stacking them. The game saves the interactions (i.e., piece movements
on board), the current, and final board states. In this game, we do not ask for test
case expected results, and players do not need to submit the test code. This approach
intends to focus students’ attention on testing concepts without worrying about the
particularities of testing frameworks, such as JUnit.

A challenge has an associated code snippet and a test coverage goal. Players analyze
the code and design tests by interacting with the board to achieve the coverage goal.
All interactions made by a player are logged, and the saved information is used when
evaluating if an attempt passes or fails the challenge’s objective.

It is important to highlight that, currently, GAMFLEW focuses on teaching the
code coverage concepts mentioned above and not on evaluating the effectiveness of tests
when detecting bugs. The objective is to define input data that allows the execution of
the code in a way that achieves the desired coverage. Also, we do not ask for expected
test results, only the test input values. So, here, the test cases may be seen as a product
of understanding the code snippet (written in JavaScript), instead of being created
to try and reveal bugs (test effectiveness). Indeed, it is only necessary to hit the code
coverage objective to pass a challenge — this is the game’s main objective.

Challenges may be created by teachers. To better illustrate a challenge, consider
the code snippet example in Listing 1. A possible challenge goal for this code would
be “Statement coverage of line 4”. To achieve this goal, players must move the pieces
on board so as the boolean expression in lines 2 and 3 is evaluated to True. This may
be achieved, for example, by moving a piece from start (4, 2) to destination (−1, 2).

1 function F(board, start, destination) {
2 if (destination.x < 0 || destination.x > 7 ||
3 destination.y < 0 || destination.y > 7) {
4 return false;
5 }
6 }

Listing 1: Example function (out of bounds movement).

7

3.1.3 Board

The board interaction is inspired by Checkers but has been adapted and expanded with
new possible interactions. Most of these are illegal in the board game, such as mov-
ing pieces out of bounds and stacking pieces. Although behaviour like stacking pieces
cannot happen in a Checkers game, from the tester’s point of view, it makes sense to
test whether or not undesired behaviours are possible in a Checkers game implemen-
tation. At the same time, this game mechanic shifts the focus to the understanding of
code snippets.

3.1.4 Hints

Each challenge has an unlockable hint to help potentially struggling players to pass
challenges. These hints are shown whenever a failing attempt to solve a challenge is
submitted and are highlighted on the interface when such a condition is met.

This mechanic allows us to prioritize player understanding of the game mechanics
and thus guide those who are struggling. The end goal of the hints then is to have all
players able to pass all challenges, even if by being helped.

3.1.5 Comments

To successfully submit an attempt, players must also submit a comment that briefly
explains their rationale when building their solution. This feature was initially included
to encourage proper interaction between teachers and students. The comments can be
valuable, as they allow students to express their difficulties to their teacher and may
also provide the teacher with a clearer picture of whether their students understand
what is being taught.

As an example, a student who submits a poor comment on their submissions —
i.e., a key smash or a completely uninterested, overly short sentence — can signal that
the student has not given the challenges enough attention or is unmotivated, signaling
the need for help from a teacher.

Comments from passing attempts are also used as anonymous hints among students
(accessible after submitting any attempt), who can access this extra help to beat a
particularly difficult challenge. This feature is akin to the incorporation of peer review
between students.

3.1.6 Score

Beating a challenge grants the player points, and each challenge has an attributed score
that is aligned to a challenge’s difficulty level. These points are used as a technique
to grow the players’ motivation to play and beat as many challenges as possible. The
number of failed attempts has no impact on the earned points — passing a challenge
will always grant the same amount of points to a player.

Using penalties to punish students who fail to pass a challenge was considered.
However, we decided against this because of our understanding that negative feedback,
such as penalties, may be disconcerting to students, as opposed to motivating (as was
observed by Ramasamy et al. [12]). As such, there are no penalizations on challenge
scores.

8

3.1.7 Teacher-Exclusive Features

The game includes an exclusive view for teachers, where it is possible to create chal-
lenges and to check students submissions and their overall performance. We highlight
these features as a way to expand the game’s base content, while also allowing it to be
tailored to the learning goals the teacher wishes students to meet. By providing the
possibility for teachers to expand the game’s content, the game may have seemingly
infinite content — only limited by the teachers’ imagination.

3.2 Implementation

The following subsections detail the implementation of GAMFLEW.

3.2.1 Architecture

GAMFLEW was developed as a monolithic app. There are only two components: a
backend and a frontend. The backend includes the database (with the base content
seeded into it) and the API that allows communication with the frontend.

Access to the API is restricted to authorized requests via a bearer token generated
by OAuth2. Without this token, registering a user is the only possibility.

A representation of GAMFLEW ’s architecture can be seen in Figure 1.

Fig. 1: Architecture diagram.

3.2.2 User Interface

GAMFLEW ’s appearance is inspired on boardgames.io’s implementation of Connect
4, which can be (partially) seen in the Wayback Machine6.

The main gameplay happens on the challenge page, which is divided into two
horizontal sections. The left ection lists the challenge’s details (title, objective, code
snippet, hint, and interaction logs), while the right Section is almost completely
occupied by the game board, as shown in Figure 2.

3.2.3 GAMFLEW’s Functionalities

GAMFLEW’s challenges are saved in JSON format in the database, with most key-
value pairs having numerical or textual format. Challenge’s expressions are saved
textually in JavaScript format. They are then evaluated to be executed as-is — the

6The Wayback Machine was used to access an older version of the website. This was because the
appearance of the website has changed (by accessing this link, one can see the new appearance).

9

Fig. 2: View of a challenge (Challenge 1.1) and Game Board.

game was programmed to handle this. The challenge’s objective is highlighted in
yellow, above the code snippet. Hints are highlighted in gray and black, below the
code snippet. Attempt comments are submitted in a popup window.

After submitting their comment and successful attempt, users are rewarded points,
which are shown live in the game (below the game’s board, as seen in Figure 2) and
shown in a notification to the user. An “How to Play” page provides instructions and
information about the game, as shown in Figure 3.

Fig. 3: How to Play page (Instructions tab).

In terms of board interaction, the following functionalities are available (see
Figure 2):

10

• Basic Movement: if we click on a piece, it turns purple, meaning it is selected.
Clicking on any other board position will move the piece to the chosen destination.

• Stacking: more than one piece may be moved to the same destination.
• Out of Bounds Movement: a piece may be moved to any position outside
the 8× 8 board grid. The player may choose the destination coordinates, though
these default to position (−1,−1).

• Add Mode: by clicking the Add button on the button list to the left of the
board, it is possible to change the number of pieces in the board, whose contours
turn purple. Clicking on an empty position adds a red piece to it. Clicking a red
piece turns it blue and clicking a blue piece makes the spot empty. Clicking on a
stack removes it from the board.

• Nesting of test cases: the Previous and Next buttons allow the player to cycle
through test cases, and are only available when a challenge requires more than
one test case to be submitted.

• Test case submission: the Go button submits all test cases made by the player.
The user receives feedback right after submitting their comment, either a (red)
warning that they failed, allowing for further attempts, or a (green) message of
congratulations.

• Board Resetting: the Reset button reinstates the initial board state of the
challenge.

Some functionalities are teacher-exclusive. For example, teachers can create new
challenges for the game and manage them. A challenge requires defining its code
snippet (in-game, these are called “code files”), an initial board state (to initialize the
board when the challenge is opened — the same initial state is applied to all test
cases whenever many are needed), and the evaluation expressions.

Fig. 4: Challenge content creator page (Code tab).

11

The Challenge Content Creator (see Figure 4) and the Challenge Manager (see
Figure 5) pages are directed at challenge creation and editing. The challenge content
creator allows the creation of new initial board states and new code snippets. The
challenge manager lists all existing challenges, allowing a teacher to edit the challenge.
To create a brand-new challenge, there is the Create Challenge button.

Fig. 5: Challenge Manager page.

The challenge creator is divided into three sections. The first Section asks for the
code file and initial board state to associate with the challenge. The second Section
(see Figure 6) asks for the challenge details (title, description, objective, score, cover-
age type, difficulty, and, if relevant, condition count). The third Section asks for the
challenge’s evaluation expressions.

Evaluation expressions are abstracted for user-friendliness and follow a specific
format. The third Section (see Figure 7) gives instructions on how to write these
expressions with proper JavaScript syntax. As an example of the abstraction, “board”
is internally translated into the proper indexation expression to access the board when
the challenge is submitted to the database.

Expressions can be assertions or tests. Assertions are optional and improve the
performance of the evaluation process, while the tests define the criteria for the success
of the challenges. To successfully pass a challenge, the user must pass its assertions and
tests. To finish creating a challenge, the user must pass their proposed challenge, thus

12

Fig. 6: Challenge Creator page, 2nd Section.

Fig. 7: Challenge Creator page, 3rd Section (Expression Maker).

verifying that it is solvable, which unlocks the Submit button. Clicking this button
makes the challenge visible to students.

3.3 Content

A total of 33 challenges have been developed, with the distribution across difficulty
and coverage as shown in Figure 8.

As mentioned before, challenges include an associated code snippet and each code
snippet can be associated with multiple challenges. These code snippets may be of
varying length, which may create different objectives to create challenges around.

Next, we will provide a short overview of the two files that are provided as code
snippets in the game’s base challenges.

13

24%24%

49%
3%

Very Easy

Easy

Normal

Hard

(a) Distribution of difficulty.

6%

9%

55%

24%

6%

Condition-Decision

MCDC

Statement

Decision

Condition

(b) Distribution of coverage (challenge type).

Fig. 8: Summary of tutorial challenges.

3.3.1 Code File 1: Is Move Valid

Code File 1 (in Listing 2) is the function is valid move checking the validity of a
piece movement. The rules of Checkers dictate the following possible moves: making
diagonal moves toward the opponent’s side to an empty place and making a diagonal
move to an empty place over an opponent’s piece (capture). The function tests this
by checking the movement’s start and destination spots and the difference between
their horizontal (rows) and vertical (columns) coordinates.

In total, 19 challenges (titled in a 1.X format) were made for this code file.

1 // board includes the board’s state.
2 // start: the (x, y) position from where a piece last moved.
3 // destination: the (x, y) position to where a piece last moved.
4 function is_valid_move(board, start, destination) {
5 // Math.abs() gives you the absolute value of whatever you call it with.
6 // Math.abs(-1) == 1
7 if (destination.x < 0 || destination.x > 7 ||
8 destination.y < 0 || destination.y > 7) {
9 return false;

10 }
11
12 var lineDifference = Math.abs(start.x - destination.x);
13 var columnDifference = Math.abs(start.y - destination.y);
14
15 if (lineDifference != columnDifference) {
16 return false;
17 } else {
18 if (lineDifference == 1) {
19 if (board[destination.x][destination.y].color == Color.EMPTY) {
20 return true;
21 } else {
22 return false;
23 }
24 } else if (lineDifference == 2) {
25 if (board[destination.x][destination.y].color == Color.EMPTY) {
26 var middlePiece = board[Math.round((start.x + destination.x) / 2)][Math.round((start.y +

destination.y) / 2)];
27 if (middlePiece.color == board[start.x][start.y].color) {
28 return false;
29 } else if (middlePiece.color != Color.EMPTY) {
30 return true;
31 }
32 } else {
33 return false;
34 }
35 } else {

14

36 return false;
37 }
38 }
39 }

Listing 2: Code File 1 content.

3.3.2 Code File 2: Is Board Valid

The is board valid function, presented in Code File 2 (in Listing 3), determines
the validity of a Checkers board. This function checks the quantity and positions of
pieces. In a Checkers game, the pieces are placed on black squares. Thus, for a board
to be valid, there cannot be pieces in an even row and odd column position and vice
versa. Furthermore, there must be at least one piece of each color and, at most, twelve
pieces of each color.

GAMFLEW has 15 challenges based on this code file, with an identifier in the
format 2.X.

1 function is_board_valid(board) { // board is the board’s state.
2 var bluePieces = this.count_blue_pieces(board);
3 var redPieces = this.count_red_pieces(board);
4
5 if (bluePieces > 12 || redPieces > 12) {
6 return false;
7 } else if (bluePieces == 0 || redPieces == 0) {
8 return false;
9 }

10
11 var pieces = this.get_pieces(board);
12 var odd = [1, 3, 5, 7], even = [0, 2, 4, 6];
13
14 for (p in pieces) {
15 if (p.position.x % 2 != 0) {
16 if (!odd.includes(p.position.y)) {
17 return false;
18 }
19 } else {
20 if (!even.includes(p.position.y)) {
21 return false;
22 }
23 }
24 }
25
26 return true;
27 }

Listing 3: Code File 2 content.

4 Preliminary Evaluation

To validate GAMFLEW, we designed an evaluation experiment. We recruited partici-
pants through our network (e.g., past students). Our questionnaires were implemented
on Google Forms and shared online. Per our inclusion criteria, participants were
required to be at least 18 years old, and students or graduates in a topic related to
informatics engineering, at BSc level or above.

15

The subsequent sections describe the GAMFLEW validation study performed on
March 14, 2024 in a remote manner, via Microsoft Teams. Its script is as follows,
totaling 2h15m:

• Step 1: Pre-questionnaire (10 minutes) to assess personal characteristics.
• Step 2: Introduction to Code Coverage Concepts (15 minutes).
• Step 3: Game Installation (15 minutes).
• Step 4: Presenting the Game (10 minutes).
• Step 5: Playing the Game (60 minutes).
• Step 6: Short Exam (15 minutes).
• Step 7: Post-questionnaire (10 minutes)

4.1 Study Goals and Research Questions

The goals of the experiment were the following:
• Objective 1: Collect players’ feedback to guide the development of new features
or improvements to GAMFLEW.

• Objective 2: Assess the impact of GAMFLEW on player learning and under-
standing of white-box testing concepts.

With this in mind, the research questions we intend to address are:
• RQ1: How do players react to the game and which features would they most like
to see added? (Objective 1)

• RQ2: What is GAMFLEW ’s impact in the student understanding of the white-
box testing concepts it features? (Objective 2)

4.2 Considerations

Based on the previous subsection, we considered the following aspects in the
experiment design:

• As GAMFLEW presents JavaScript code, assessing players’ knowledge of
JavaScript is important.

• For a player with more programming experience, we assume that it will be
easier to understand the code presented, making it important to evaluate the
programming experience.

• Although the test cases are submitted through interaction with the Checkers
board, knowing the rules of this game is not essential because the interaction
is much more flexible, allowing movements of pieces that are not allowed in a
Checkers game.

• As GAMFLEW does not explicitly teach white-box testing concepts, assessing
whether players have this prior knowledge is essential.

4.3 Experiment Description

The experiment was structured into eight steps, which we explore next.

16

Anonymity

As per Objective 2 of the experiment, it is important to evaluate how the experi-
ment’s participants were impacted by using GAMFLEW. However, many steps were
taken towards the anonymization and protection of the participants’ identities.

The data collected can be considered purely demographic or insufficient to allow
users to be identified. In the interest of following the best practices in our investigation,
participants were free to abandon the experiment at any point and were made aware of
our commitment to their anonymity via disclaimers that preceded all questionnaires.

Users were asked to provide their own three-letter and two-number code — for
example, LJD24 — to use in all moments of data collection, thus allowing our anal-
ysis to trace each user’s performance and analyze it against their stated (relevant)
characteristics, such as programming experience, but without revealing the identity of
the participants.

4.3.1 Step 1: Pre-questionnaire

Before introducing the game, we collected all relevant information about the partici-
pants. The following questions were part of the pre-questionnaire:

• Their unique code for the experiment (as mentioned in Anonymity).
• Personal characteristics:

– Age range, restricted to four mutually exclusive ranges.
– Self-description, with the possibility to answer however desired (for example,
Male).

– Course acronym (for example, MEIC — Masters Degree in Informatics and
Computing Engineering).

– Course year, restricted to “1st”, “2nd” or “3rd”.
• Technological skills:

– Previous knowledge in software testing, rated on a 5-level range going from
“No knowledge” to “Extensive knowledge”.

– Previous knowledge of software testing concepts, comprising a list of mainly
white-box testing concepts.

– Years of programming experience, restricted to one of six possible answers.
– Knowledge of the JavaScript programming language, rated on a 5-level range.
– Confidence regarding technological skills, rated from “Strongly disagree” to
“Totally confident” in a 5-level range. Includes four statements regarding
confidence in using a brand-new software application.

∗ Q0.1 - “I could use a new software application even if I never used an
application like it before.”

∗ Q0.2 - “I could use a new software application well if I had just the
built-in-help facility or manual for assistance.”

∗ Q0.3 - “I could use a new software application well if I had first seen
someone else using it before trying it myself.”

∗ Q0.4 - “I could use a new software application well using only the
Internet for assistance.”

17

4.3.2 Step 2: Introduction to Code Coverage Concepts

At the time of the experiment, GAMFLEW did not explain the code coverage con-
cepts. Instead, it allowed for their consolidation after learning about them. With this
in mind, we had a short lesson with a brief introduction of the five code coverage con-
cepts used by the game to give the participants all the theoretical knowledge needed
to tackle challenges properly.

4.3.3 Step 3: Game Installation

The game was shared with participants using Docker. This allowed each participant
to have their local iteration of the game. In practice, this meant that information from
participants was not stored in a centralized manner during the experiment, hence the
inclusion of Step 6.

With the Docker-ized version of the game, the users got a user manual, a README
file, and a short guide for the experiment. They were also urged to comment on most,
if not all, of their attempts while trying challenges.

4.3.4 Step 4: Presenting the Game

The game was introduced to the users, explaining the core mechanics of how to play it
and how they relate to the previously described code coverage techniques. All single-
player mechanics were presented to the participants, with the possibility to clear any
doubts that arose.

4.3.5 Step 5: Playing the Game

The users were then asked to open the game. For the experiment, five challenges were
chosen as recommended for the users to prioritize. The main objective for participants
was to pass these five challenges, one of each of the code coverage types included,7 and
afterwards try to solve as many other challenges as possible within the time limit.

Users were given 60 minutes to play the game. Beyond potential assistance with
unpredictable errors, they were left to play autonomously.

4.3.6 Step 6: Data Collection

To circumvent the non-centralized manner in which the users played the game, users
were instructed to download a dump of their attempts from the prototype’s database
using pgAdmin’s web interface, which was included in the provided Docker version
of the game. These dumps were anonymously submitted using a file drop — par-
ticipants were asked to rename them using the unique code they created in the
pre-questionnaire.

4.3.7 Step 7: Short Exam

After playing the game, participants answered a short exam. It aimed to assess
knowledge about the theoretical concepts of the game. The exam questions were:

7The challenges chosen were Challenge 1.1, Challenge 1.2, Challenge 2.4, Challenge 2.7, and Challenge
2.8.

18

• Questions 1.1: In a statement coverage challenge to cover a specific line of code,
do we need more than one test case to overcome the challenge?

• Question 1.2: Justify your previous answer.
• Question 2: Determine the minimum number of test cases needed to achieve
100% decision coverage of line 1 in Figure 9. Answer options: “one”, “two”, or
“three”.

Fig. 9: Short Exam, Question 2 Code Snippet

• Question 3: Determine the minimum number of test cases necessary to achieve
100% condition coverage for line 3 in Figure 10. Options were: “1 - because the
Boolean expression has only one condition”; “2 - because the condition must be
covered for cases True and False”; and “3 - because there are three determinant
test cases”.

Fig. 10: Short Exam, Question 3 Code Snippet

• Question 4: Identify the correct set of test cases needed to achieve 100% mod-
ified condition/decision coverage for line 1 in Figure 10. Answer options were:
“{1, 2, 3, 4}”, “{1, 2, 3}”, “{1, 2}”, and “{2, 3, 4}”.

4.3.8 Step 8: Post-questionnaire

Finally, participants were asked to fill out a post-questionnaire (Appendix A).
The post-questionnaire has nine different sections, with statements to be rated by

the participants on a standard Likert scale (going from Strongly disagree to Strongly
agree), each regarding different aspects of GAMFLEW.

The sections are as follows:
• Section 1 - Ease of use and usability ;

19

– Q1.1 - “GAMFLEW is easy to use/follow.”
– Q1.2 - “GAMFLEW is well organized so it is easy to find the necessary
information.”

• Section 2 - Learnability : the ease with which users get familiar with using the
capsule;
– Q2.1 - “I would imagine most of the students would start learning with
GAMFLEW quickly.”

– Q2.2 - “GAMFLEW is clear and understandable.”
– Q2.3 - “I need a lot of background knowledge to be able to learn with
GAMFLEW.”

– Q2.4 - “I would need teacher support to start learning with GAMFLEW.”
• Section 3 - Perceived satisfaction, confidence, and comfort ;

– Q3.1 - “Overall, I am satisfied with learning based on GAMFLEW.”
– Q3.2 - “I felt confident learning with GAMFLEW.”
– Q3.3 - “I felt comfortable learning with GAMFLEW.”
– Q3.4 - “GAMFLEW motivated me to learn.”
– Q3.5 - “I would recommend GAMFLEW to other students.”

• Section 4 - Personal difficulties or complexity ;
– Q4.1 - “I found GAMFLEW unnecessarily complex.”
– Q4.2 - “I thought there was too much inconsistency in GAMFLEW.”
– Q4.3 - “I found GAMFLEW very cumbersome.”
– Q4.4 - “Learning with GAMFLEW is a frustrating experience.”
– Q4.5 - “I have spent too much time correcting things in GAMFLEW.”

• Section 5 - Perceived effectiveness, productiveness, and efficiency ;
– Q5.1 - “I can effectively learn with GAMFLEW.”
– Q5.2 - “I can improve my learning performance using GAMFLEW.”
– Q5.3 - “I can improve my learning productivity using GAMFLEW.”
– Q5.4 - “It is easier to learn with GAMFLEW.”
– Q5.5 - “The answer you should provide here is Disagree.” 8

• Section 6 - Overall usefulness perception (fit for purpose);
– Q6.1 - “GAMFLEW meets my learning requirements.”
– Q6.2 - “GAMFLEW has all the content I expect it to have.”
– Q6.3 - “I would like to use GAMFLEW frequently.”
– Q6.4 - “I would find GAMFLEW useful in my learning process.”
– Q6.5 - “It would be easy for me to become more qualified usingGAMFLEW.”

• Section 7 - System supporting information and feedback ;
– Q7.1 - “The information (such as online help, on-screen messages, etc) is
helpful.”

– Q7.2 - “The information is effective in helping me complete the learning
tasks.”

– Q7.3 - “The organization of information on theGAMFLEW screens is clear.”
– Q7.4 - “GAMFLEW gives error messages that clearly tell me how to correct

the problems.”
– Q7.5 - “Whenever I make a mistake using GAMFLEW, I recover easily.”

8First wellness check, to avoid influencing participants and as a validation of their feedback.

20

• Section 8 - System Interface and interaction ;
– Q8.1 - “The answer you should provide here is Neutral.” 9

– Q8.2 - “The interface of the GAMFLEW is pleasant.”
– Q8.3 - “I like using the interface of GAMFLEW.”
– Q8.4 - “The interaction with GAMFLEW is clear and understandable.”

• Section 9 - Serious Game (game experience, usability, and learning
experience ;
– Q9.1 - “The experience was challenging and stimulating.”
– Q9.2 - “I was able to achieve the goals set in GAMFLEW.”
– Q9.3 - “I remained focused on GAMFLEW throughout.”
– Q9.4 - “It was easy to respond to in-game GAMFLEW survey questions.”
– Q9.5 - “The learning goals of the GAMFLEW game were clear.”
– Q9.6 - “GAMFLEW provided opportunities to receive feedback.”
– Q9.7 - “I recognize the value of GAMFLEW as a tool for learning.”

At the end of the post-questionnaire, users could provide comments or feedback
they wanted to share in a final question with a free text box.

4.4 Results & Discussion

The experiment results are described in the following sections.

4.4.1 Pre-questionnaire

Participants

There were nine participants in total, which were labelled using uppercase letters. On
their demographic distribution:

• Seven participants identified as Male, and the remaining two identified as Female.
• Seven participants were in the 18-25 age range, while the remaining two were in
the 25-35 age range.

• Seven participants are in a Masters program, one participant is in a Doctorate
program and the final participant provided a null answer.

• Seven participants are in the 2nd year of their course, one in their 1st year, and
the final participant provided a null answer.

The vast majority of participants were Male. Regarding age, most were between 18 to
25 years of age, which would be the age at which students study for a Master’s degree.
This is also reflected in the academic course distribution. Participant H answered
neither of the prior courses, signaling they’d finished their studies. Most participants,
all Master students, were in their second year, while the PhD student (Participant B)
was in their 1st year. Once again, there’s a null answer.

Technological Skills

Regarding technological skills, the participants stated that the average software test-
ing knowledge (3rd question) was 3.11, where level 3 is taken as average knowledge.
Participant H provided the only “Extensive knowledge” answer regarding software
testing. Most students answered with level 2 (below average) or level 3. Regarding

9Second wellness check, to avoid influencing participants and as a validation of their feedback.

21

Question 2, the most well-known concepts were unit testing, mutation coverage,
white-box testing, black-box testing, and statement coverage. The latter is assumed
to be known because of code coverage when applied to unit testing environments.
Question 2’s results are summarized in Figure 11.

1 2 3 4 5 6 7 8 9

Black-box testing

Condition/decision coverage

Decision coverage

Modified condition/decision coverage

Mutation testing

Path coverage

Qcoverage

Unit testing

White-box testing

8

3

3

1

9

3

7

9

8

Count

C
o
n
ce
p
t

Fig. 11: Second question (known software testing concepts) summary.

Programming experience was mostly in the 4-6 years range (6 participants),
followed by 1-3 years (2 participants, one of them Participant H) and 7-9 years (Par-
ticipant F). The average knowledge of the JavaScript programming language was 3.22,
where level 3 is considered the average knowledge. Most participants answered on lev-
els 3 and 4 (above average), with Participant H being the only one claiming not to
know JavaScript.

Ultimately, on the four statements regarding technological skills (Figure 12), the
results show that all participants are confident in their capability to use a new software
tool — only Q0.1 had 3 neutral answers, with all other answers being above average
confidence (Likely yes or Totally confident).

4.4.2 Attempts

From the files submitted by each participant, a summary of the total attempts was
made (shown in Table 1). Only Participant H did not complete the 5 recommended
challenges in the given time. In general, most participants felt compelled to go beyond
the recommended challenges, though to varying degrees. Only Participant H did not
finish the recommended challenges, while all other participants (except Participants
F and I) completed at least 2 more attempts. In fact, Participant B almost completed
all existing 33 challenges (33 passed attempts, 32 different challenges), followed by
Participant G (28 passed attempts, all for different challenges), and Participants C
and D (24 passed attempts, with 24 and 23 different challenges, respectively).

This leads us to believe that GAMFLEW provided a motivating environment for
learning the presented concepts.

22

Fig. 12: Pre-questionnaire results (Technological Skills).

4.4.3 Short Exam

In all multiple-choice questions, with the exception of the 2nd question, there was only
1 wrong answer. In the 2nd question, there were two wrong answers.

Regarding question 1.2, all justifications were correct, even the one from the sup-
posedly wrong answer, stating that it may depend on the number of code lines in
a challenge. This is considered correct, though no existing challenge asks to achieve
100% statement coverage of more than one line. Table 2 summarizes the results.

23

Table 1: Attempts
summary by participant.

Participant Pass Fail
A 7 0
B 33 4
C 24 1
D 24 0
E 9 2
F 5 1
G 28 0
H 4 0
I 5 0

Table 2: Short exam results.

Question 1.1 Question 2 Question 3 Question 4
Correct 8 7 8 8
Wrong 1 2 1 1

When studying the answers, it was postulated that all the wrong answers were
from the same participant, which was not true. For most questions, each incorrect
answer came from a different participant — Participant G got question 1 wrong, and
Participant D got question 2 wrong. The mistake may have spanned from a simple
misunderstanding of the code coverage measures as introduced at the beginning of the
experiment.

More interestingly, Participant H got questions 2, 3, and 4 wrong — which may be
tentatively explained with their 1-3 years of programming experience and no knowledge
of JavaScript. Especially the latter is considered key to do well in the game’s challenges,
as understanding a challenge’s code snippet (written in JavaScript) is required to know
how to beat the challenge.

These promising results lead us to believe participants may have benefited from
using GAMFLEW to learn the presented concepts.

4.4.4 Post-Questionnaire

The following sections summarize each of the results of the post-questionnaire sections.
For the sake of simplicity, averages are used to convey the results in an aggregated
manner.

Ease of use and usability

The most negative answers regarding GAMFLEW ’s ease of use and organization were
both Neutral. All remaining answers agreed, with a tendency towards Agree (4th level).
Q1.1’s average was 4.22, while Q1.2 gave an average of 4.11.

Figure 13 summarizes the results which indicate that GAMFLEW ’s interface is
responsive and easy to use, but with some room for improvement.

24

Fig. 13: Post-questionnaire results (Section 1).

Learnability

Regarding learnability, participants agree that players can quickly learn with GAM-
FLEW (4.00 average in Q2.1) and that it is clear and understandable (3.98 average
in answers to Q2.2). Participants do not need much background knowledge to play
GAMFLEW (2.33 average in Q2.3) nor need much teacher support to start learning
with GAMFLEW (2.56 average in Q2.4).

Figure 14 summarizes the results, that appear to show that GAMFLEW ’s supports
the learning process.

Perceived satisfaction, confidence, and comfort

There is overall satisfaction with GAMFLEW (4.22 average in Q3.2), meaning
that participants felt confident when learning through gameplay. Also, participants
felt comfortable and motivated (4.78 in both Q3.3 and Q3.4) and would mostly
recommend GAMFLEW to others (4.56 average in Q3.5).

Results shown in Figure 15 lead us to believe that GAMFLEW motivates and
captivates students attention.

Personal difficulties and complexity

Regarding difficulties and complexity, participants think that GAMFLEW is not com-
plex (2.00 average in Q4.1), it is consistent (1.44 average in Q4.3), and it is not
cumbersome (2.22 average in Q4.3). Participants agreed that GAMFLEW provides
a non-frustrating experience (1.33 average in Q4.4) and did not spend a lot of time
correcting things (1.67 average in Q4.5).

Figure 16 summarizes the results, which suggest that GAMFLEW is not complex.

25

Fig. 14: Post-questionnaire results (Section 2).

Fig. 15: Post-questionnaire results (Section 3).

Perceived effectiveness, productiveness, and efficiency

Participants felt they could effectively learn with GAMFLEW (4.44 average in Q5.1)
and could improve their learning performance (4.44 average in Q5.2) and productivity

26

Fig. 16: Post-questionnaire results (Section 4).

(4.22 average in Q5.3). In addition, results show that participants believe it is easier
to learn with GAMFLEW (4.22 average in Q5.4). Finally, all participants correctly
answered the attention check question.

Figure 17 summarizes the results, which lead us to believe that GAMFLEW
promotes learning among players.

Fig. 17: Post-questionnaire results (Section 5).

27

Overall usefulness perception (fit for purpose)

Participants believed GAMFLEW met their learning requirements (4.11 average in
Q6.1) and slightly agree that GAMFLEW had all the content they expected (3.89
average in Q6.2). Participants wish to use GAMFLEW frequently (3.67 average in
Q6.3), believe it is useful to their learning process (4.67 average in Q6.4), and believe
it is helpful to become more qualified (4.11 average in Q6.5).

The results in Figure 18 suggest that GAMFLEW promotes and is useful in the
learning process.

Fig. 18: Post-questionnaire results (Section 6).

System supporting information and feedback

The information provided by GAMFLEW to the players is helpful (4.11 average in
Q7.1), effective (3.89 average in Q7.2), and clearly organized (4.00 average in Q7.3).
Error messages communicate corrective actions effectively (3.44 average in Q7.4), and
there is a general agreement that it is easy to recover from mistakes (4.33 average in
Q7.5).

The results in Figure 19 suggest that the game’s interface is clear and mostly
intuitive.

System Interface and interaction

All participants passed the second and final wellness check. In general, participants
found GAMFLEW ’s interface pleasant (average 4.44 -Q8.2), enjoyed using it (average
4.56 - Q8.3), and found interactions to be clear and understandable (average 4.11 -
Q8.4).

Figure 20 shows the results, which seem to indicate an user interface positively
received by players.

28

Fig. 19: Post-questionnaire results (Section 7)

Fig. 20: Post-questionnaire results (Section 8)

Serious game (game experience, usability, and learning experience)

Participants found the experiment challenging and stimulating (4.11 average onQ9.1).
They generally believed they achieved the goals set in GAMFLEW (4.56 average in
Q9.2). Participants remained focused throughout the experiment (4.11 average in
Q9.3) and questions were easy to answer (4.11 average in Q9.4). Participants also
found GAMFLEW ’s learning goals clear (average 4.33 on Q9.5) and agreed to have
chances to provide feedback (average 4.00 on Q9.6). Finally, participants strongly
recognized GAMFLEW ’s value as a tool for learning (4.78 average in Q9.7).

29

We believe that the results shown in Figure 21 indicate that GAMFLEW provides
a pleasant and helpful environment for learning.

Fig. 21: Post-questionnaire results (Section 9).

In general, the post-questionnaire provided positive results. However, considering
the comments submitted in this questionnaire, GAMFLEW still has room to improve.
One of the more frequent suggestions asked for in-game explanations of the code
coverage measures it features. Other comments pointed out occurrences or feedback
for further development of the game’s usability, such as a back arrow present on all
pages and the saving of a user’s scroll position in the challenge selection menu.

Beyond this, comments complimented the game’s appearance and structure and
provided constructive feedback on certain occurrences that could be classified as bugs.
No player reported a game-breaking bug, which points towards the robustness of the
game and its design.

4.4.5 Answers to the Research Questions

RQ1: How do players react to the game and which features would they
most like to see added?

The results appear to indicate that players’ reactions to the game are positive, as
participants enjoyed its interface, gameplay, and associated features. In general, they
asked for usability-related features, such as a dedicated back button and in-game
explanations of the code coverage measures for their easy access.

RQ2: What is GAMFLEW’s impact in the student understanding of the
white-box testing concepts it features?

Although the results of our preliminary evaluation are not generalizable, due to the
number of participants, the results seem to indicate that GAMFLEW has positively

30

impacted the participants’ understanding of white-box testing concepts. Though many
participants claimed to have heard of the featured code coverage measures before, the
game may have helped consolidate their knowledge or impacted their understanding
of such concepts. This analysis is derived from both the confidence the participants
admitted in the post-questionnaire and the overall positive results of the short exam.

4.5 Limitations and Threats to Validity

At the start of the experiment, we asked participants to self-assess their knowledge and
technological skills. At the end, we asked students to perform a short exam to assess
their knowledge. We acknowledge this asymmetrical evaluation, i.e., self-evaluation
may be subjective while the final evaluation is not. However, we made this choice
to avoid giving an exam at the start, which could reveal the specific knowledge we
expected them to gain during gameplay, which could influence how they approached
the game and alter their overall experience.

In addition, we are aware that, due to the number of participants in the exper-
iment, the results cannot be considered statistically relevant and, therefore, cannot
be generalized. However, the goal was to conduct a preliminary evaluation that could
inform future improvements to the game.

Further threats include the Hawthorn effect, which we attempted to mitigate by
not observing the users as they were carrying out the experiment and by collecting
data anonymously to protect user privacy.

Beyond this, some game bugs experienced by the participants may have affected
their performance. However, all feedback collected has been taken into account and
will be considered in GAMFLEW ’s future developments.

5 Conclusion

This paper presents a novel serious game to teach white-box test case design
techniques, GAMFLEW. Following a current trend in introducing gamification tech-
niques in education, GAMFLEW is another contribution in this direction tailored to
educators and students.

GAMFLEW provides a new learning experience for students who try to overcome
the challenges (i.e., design test cases to achieve defined coverage criteria) designed
by their teachers (i.e., the code to analyze and the coverage criteria to fulfill). The
results obtained in the experiment with students give us confidence in the potential
of GAMFLEW as a tool for teaching software testing. Although there is room for
improvement, the experiment has shown that GAMFLEW creates a positive learning
experience in which participants are motivated and interested.

All evaluated aspects of the game, as specified in the experiment’s post-
questionnaire, gave positive results: users found GAMFLEW easy to use, the
learnability to be adequate, showed satisfaction while using it, experienced few diffi-
culties, recognized its effectiveness and usefulness, and found its interface informative,
helpful, and pleasant. Beyond this, participants enjoyed the game and the experiment
they partook in.

31

The results lead us to believe we are on the right track to fulfilling GAMFLEW ’s
learning goals, as conceptualized from its inception, out of which we can highlight
the participation of educators as more than mediators of gameplay but as contribu-
tors to it. We are committed to bettering and continuing work on GAMFLEW, thus
contributing to the evolution of software testing education.

5.1 Future Work

In the future, we intend to develop a multiplayer mode and repeat the validation
experiment with more students to produce statistically relevant results that assess
GAMFLEW ’s impact in the learning of software testing concepts. Finally, we intend
to expand the teacher-exclusive features and validate them in an experiment with
teachers.

5.2 Accessing the Game

The Docker version utilized in the experiment can be accessed through the following
link. The online version is available on this link.

Declarations

Funding This work is being funded by the ENACTEST Erasmus+ project number
101055874.

Conflict of interest/Competing interests The authors declare no conflict/com-
peting interests.

Ethics approval and consent to participate All data collected in the user study
was anonymous, provided voluntarily, and users could stop participating at any time,
thus satisfying all the required ethical standards. At the start of the study, all par-
ticipants were shown a consent form to which they had to agree prior to starting the
study.

Consent for Publication Not applicable.

Data Availability Not applicable.

Materials Availability Not applicable.

Code Availability Code available here.

Author Contribution The game and study designs were discussed by all authors.
Mateus Silva was mainly responsible for implementing the game under the supervi-
sion of Ana C. R. Paiva and Alexandra Mendes. All authors contributed to the final
manuscript.

32

https://figshare.com/articles/software/GAMFLEW_Docker_Version_March_14th_2024_/27088192?file=49361308
http://fe.up.pt/gamflew
https://figshare.com/articles/software/GAMFLEW_Docker_Version_March_14th_2024_/27088192?file=49361308

References

[1] Djaouti, D., Alvarez, J., Jessel, J.-P.: Classifying serious games: the g/p/s model.
Handbook of Research on Improving Learning and Motivation through Edu-
cational Games: Multidisciplinary Approaches (2011) https://doi.org/10.4018/
978-1-60960-495-0.ch006

[2] Clegg, B.S., Rojas, J.M., Fraser, G.: Teaching software testing concepts using
a mutation testing game. In: 2017 IEEE/ACM 39th International Conference
on Software Engineering: Software Engineering Education and Training Track
(ICSE-SEET), pp. 33–36 (2017). https://doi.org/10.1109/ICSE-SEET.2017.1

[3] Fraser, G., Gambi, A., Rojas, J.M.: A preliminary report on gamifying a software
testing course with the code defenders testing game. In: Proceedings of the 3rd
European Conference of Software Engineering Education. ECSEE ’18, pp. 50–
54. Association for Computing Machinery, New York, NY, USA (2018). https:
//doi.org/10.1145/3209087.3209103

[4] Oliveira, B., Afonso, P., Costa, H.: Testeg — a computational game for teaching of
software testing. In: 2016 35th International Conference of the Chilean Computer
Science Society (SCCC), pp. 1–10 (2016). https://doi.org/10.1109/SCCC.2016.
7836022

[5] Soska, A., Mottok, J., Wolff, C.: An experimental card game for software test-
ing: Development, design and evaluation of a physical card game to deepen
the knowledge of students in academic software testing education. In: 2016
IEEE Global Engineering Education Conference (EDUCON), pp. 576–584 (2016).
https://doi.org/10.1109/EDUCON.2016.7474609

[6] Fraser, G.: Gamification of software testing. In: 2017 IEEE/ACM 12th Inter-
national Workshop on Automation of Software Testing (AST), pp. 2–7 (2017).
https://doi.org/10.1109/AST.2017.20

[7] Henrique Dias Valle, P., Toda, A.M., Barbosa, E.F., Maldonado, J.C.: Edu-
cational games: A contribution to software testing education. In: 2017 IEEE
Frontiers in Education Conference (FIE), pp. 1–8 (2017). https://doi.org/10.
1109/FIE.2017.8190470

[8] Ribeiro, T.P.B., Paiva, A.C.R.: iLearnTest: Educational game for learning
software testing. In: 2015 10th Iberian Conference on Information Systems
and Technologies (CISTI), pp. 1–6 (2015). https://doi.org/10.1109/CISTI.2015.
7170608

[9] Materazzo, A., Fulcini, T., Coppola, R., Torchiano, M.: Survival of the tested:
Gamified unit testing inspired by battle royale. In: 2023 IEEE/ACM 7th Inter-
national Workshop on Games and Software Engineering (GAS), pp. 1–7 (2023).
https://doi.org/10.1109/GAS59301.2023.00008

33

https://doi.org/10.4018/978-1-60960-495-0.ch006
https://doi.org/10.4018/978-1-60960-495-0.ch006
https://doi.org/10.1109/ICSE-SEET.2017.1
https://doi.org/10.1145/3209087.3209103
https://doi.org/10.1145/3209087.3209103
https://doi.org/10.1109/SCCC.2016.7836022
https://doi.org/10.1109/SCCC.2016.7836022
https://doi.org/10.1109/EDUCON.2016.7474609
https://doi.org/10.1109/AST.2017.20
https://doi.org/10.1109/FIE.2017.8190470
https://doi.org/10.1109/FIE.2017.8190470
https://doi.org/10.1109/CISTI.2015.7170608
https://doi.org/10.1109/CISTI.2015.7170608
https://doi.org/10.1109/GAS59301.2023.00008

[10] Maŕın, B., Vos, T.E.J., Paiva, A.C.R., Fasolino, A.R., Snoeck, M.: ENACTEST
- European Innovation Alliance for Testing Education. In: CEUR Workshop Pro-
ceedings, vol. 3144 (2022). https://www.scopus.com/inward/record.uri?eid=2-s2.
0-85131255272&partnerID=40&md5=23524a140850922df11d79fe0b9fbe51

[11] Maŕın, B., Vos, T., Snoeck, M., Paiva, A., Fasolino, A.: ENACTEST project
- European innovation alliance for testing education. In: Font, J., Arcega, L.,
Reyes-Román, J.-F., Giachetti, G. (eds.) Proceedings of the Research Projects
Exhibition Papers Presented at the 35th International Conference on Advanced
Information Systems Engineering (CAiSE 2023). CEUR-WS, vol. 3413, pp. 91–
96. CEUR Workshop Proceedings, Zaragoza, Spain (2023). https://ceur-ws.org/
Vol-3413/paper13.pdf

[12] Ramasamy, V., Alomari, H., Kiper, J., Potvin, G.: A minimally disruptive
approach of integrating testing into computer programming courses. In: 2018
IEEE/ACM International Workshop on Software Engineering Education for
Millennials (SEEM), pp. 1–7 (2018)

[13] Costa, I., Oliveira, S.: A systematic strategy to teaching of exploratory testing
using gamification. In: Proceedings of the 14th International Conference on Eval-
uation of Novel Approaches to Software Engineering. ENASE 2019, pp. 307–314.
SCITEPRESS - Science and Technology Publications, Lda, Setubal, PRT (2019).
https://doi.org/10.5220/0007711603070314

[14] Ferreira Costa, I.E., Oliveira, S.R.B.: The use of gamification to support the
teaching-learning of software exploratory testing: an experience report based on
the application of a framework. In: 2020 IEEE Frontiers in Education Conference
(FIE), pp. 1–9 (2020). https://doi.org/10.1109/FIE44824.2020.9273943

[15] Elgrably, I.S., Oliveira, S.R.B.: Gamification and evaluation of the use the agile
tests in software quality subjects: The application of case studies. In: Proceed-
ings of the 13th International Conference on Evaluation of Novel Approaches to
Software Engineering. ENASE 2018, pp. 416–423. SCITEPRESS - Science and
Technology Publications, Lda, Setubal, PRT (2018). https://doi.org/10.5220/
0006800304160423

[16] Gomes, R.F., Lelli, V.: Gamut: Game-based learning approach for teaching unit
testing. In: Proceedings of the XX Brazilian Symposium on Software Quality.
SBQS ’21. Association for Computing Machinery, New York, NY, USA (2021).
https://doi.org/10.1145/3493244.3493263

[17] Jesus, G.M., Paschoal, L.N., Ferrari, F.C., Souza, S.R.S.: Is it worth using
gamification on software testing education? an experience report. In: Proceed-
ings of the XVIII Brazilian Symposium on Software Quality. SBQS ’19, pp.
178–187. Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3364641.3364661

34

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131255272&partnerID=40&md5=23524a140850922df11d79fe0b9fbe51
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131255272&partnerID=40&md5=23524a140850922df11d79fe0b9fbe51
https://ceur-ws.org/Vol-3413/paper13.pdf
https://ceur-ws.org/Vol-3413/paper13.pdf
https://doi.org/10.5220/0007711603070314
https://doi.org/10.1109/FIE44824.2020.9273943
https://doi.org/10.5220/0006800304160423
https://doi.org/10.5220/0006800304160423
https://doi.org/10.1145/3493244.3493263
https://doi.org/10.1145/3364641.3364661

[18] Mascolo, M.: Change processes in development: The concept of coactive scaf-
folding. New Ideas in Psychology 23, 185–196 (2005) https://doi.org/10.1016/j.
newideapsych.2006.05.002

[19] ISTQB: ISTQB, International Software Testing Qualifications Board. https://
www.istqb.org/. Accessed 28-03-2024.

[20] Bishop, J., Horspool, R., Xie, T., Tillmann, N., Halleux, J.: Code hunt: Experience
with coding contests at scale, pp. 398–407 (2015). https://doi.org/10.1109/ICSE.
2015.172

[21] CoderPad: Coding Games and Programming Challenges to Code Better —
codingame.com. https://www.codingame.com. Accessed 04-11-2023.

[22] Elbaum, S., Person, S., Dokulil, J., Jorde, M.: Bug hunt: Making early software
testing lessons engaging and affordable. In: 29th International Conference on Soft-
ware Engineering (ICSE’07), pp. 688–697 (2007). https://doi.org/10.1109/ICSE.
2007.23

[23] Bell, J., Sheth, S., Kaiser, G.: Secret ninja testing with halo software engineering.
In: Proceedings of the 4th International Workshop on Social Software Engineer-
ing. SSE ’11, pp. 43–47. Association for Computing Machinery, New York, NY,
USA (2011). https://doi.org/10.1145/2024645.2024657

[24] CodeSignal: (2023). https://codesignal.com/

[25] Logas, H., Whitehead, J., Mateas, M., Vallejos, R., Scott, L., Shapiro, D.G.,
Murray, J.T., Compton, K., Osborn, J.C., Salvatore, O., Lin, Z., Sánchez, H.A.,
Shavlovsky, M., Cetina, D., Clementi, S., Lewis, C.: Software verification games:
Designing xylem, the code of plants. In: International Conference on Foundations
of Digital Games (2014). https://api.semanticscholar.org/CorpusID:18755001

[26] Thiry, M., Zoucas, A., Silva, A.: Empirical study upon software testing learning
with support from educational game, pp. 481–484 (2011)

35

https://doi.org/10.1016/j.newideapsych.2006.05.002
https://doi.org/10.1016/j.newideapsych.2006.05.002
https://www.istqb.org/
https://www.istqb.org/
https://doi.org/10.1109/ICSE.2015.172
https://doi.org/10.1109/ICSE.2015.172
https://www.codingame.com
https://doi.org/10.1109/ICSE.2007.23
https://doi.org/10.1109/ICSE.2007.23
https://doi.org/10.1145/2024645.2024657
https://codesignal.com/
https://api.semanticscholar.org/CorpusID:18755001

A Appendix A: Exam Answers

Below, we provide the correct answers for the short exam questions.
• Question 1

– Question 1.1: No.
– Question 1.2 (example): As statement coverage only asks for a certain
line to be executed, only one test case suffices.

• Question 2: Two.
• Question 3: 2, because the condition must be covered for cases True and False.
• Question 4: {2, 3, 4}

36

	Introduction
	Related Work
	Gamification
	Existing Serious Games

	GAMFLEW
	Description
	Code Coverage Concepts
	Objectives
	Board
	Hints
	Comments
	Score
	Teacher-Exclusive Features

	Implementation
	Architecture
	User Interface
	GAMFLEW's Functionalities

	Content
	Code File 1: Is Move Valid
	Code File 2: Is Board Valid

	Preliminary Evaluation
	Study Goals and Research Questions
	Considerations
	Experiment Description
	Anonymity
	Step 1: Pre-questionnaire
	Step 2: Introduction to Code Coverage Concepts
	Step 3: Game Installation
	Step 4: Presenting the Game
	Step 5: Playing the Game
	Step 6: Data Collection
	Step 7: Short Exam
	Step 8: Post-questionnaire

	Results & Discussion
	Pre-questionnaire
	Participants
	Technological Skills

	Attempts
	Short Exam
	Post-Questionnaire
	Ease of use and usability
	Learnability
	Perceived satisfaction, confidence, and comfort
	Personal difficulties and complexity
	Perceived effectiveness, productiveness, and efficiency
	Overall usefulness perception (fit for purpose)
	System supporting information and feedback
	System Interface and interaction
	Serious game (game experience, usability, and learning experience)

	Answers to the Research Questions
	RQ1: How do players react to the game and which features would they most like to see added?
	RQ2: What is GAMFLEW's impact in the student understanding of the white-box testing concepts it features?

	Limitations and Threats to Validity

	Conclusion
	Future Work
	Accessing the Game

	Appendix A: Exam Answers

