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Abstract
Mobile devices have become integral to our everyday lives,
yet their utility hinges on their battery life. In Android apps,
resource leaks caused by inefficient resource management
are a significant contributor to battery drain and poor user ex-
perience. Our work introduces Alpakka, a source-to-source
compiler for Android’s Smali syntax. To showcase Alpakka’s
capabilities, we developed an Alpakka library capable of
detecting and automatically correcting resource leaks in An-
droid APK files. We demonstrate Alpakka’s effectiveness
through empirical testing on 124APK files from 31 real-world
Android apps in the DroidLeaks [12] dataset. In our analysis,
Alpakka identified 93 unique resource leaks, of which we
estimate 15% are false positives. From these, we successfully
applied automatic corrections to 45 of the detected resource
leaks.

CCS Concepts: • Human-centered computing→ Ubiq-
uitous and mobile computing.
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1 Introduction
Mobile devices have become indispensable companion gad-
gets in our everyday lives, with Android being the most
prevalent mobile operating system, boasting a 70.5% market
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share [19]. Its most popular app store, Google Play, hosts
close to 2.5 million apps [1].

System resources, such as sensors and device peripherals,
serve as the fundamental building blocks that enable the
diverse functionalities of mobile applications.

In Android apps, resources can be acquired by invoking the
respective system API. Managing the use of these resources
appropriately is of extreme importance in order to avoid
unnecessarily depleting the battery. A resource leak occurs
when developers unintentionally retain resources after they
are no longer needed. This oversight can lead to degraded app
performance, increased power consumption, and an overall
diminished user experience.

However, ensuring timely resource release across all exe-
cution paths is not always a trivial task due to the intricacies
of Android’s lifecycle model, which moves through differ-
ent states, triggering different callback methods as an app
evolves through its lifecycle.
In light of this, our work introduces a solution that facil-

itates a shift towards making resource leak detection and
resolution more accessible in Android app development.
Alpakka is a powerful source-to-source compiler for the

Smali syntax, enabling developers to analyze and transform
compiled Android APK files without the need for access to
the original source code. By working directly with Smali, a
human-readable representation of Android’s DEX bytecode,
instead of decompiled Java code, Alpakka ensures that all
functionality and instructions are accurately preserved while
offering the capability to apply modifications. Furthermore,
by targeting APKs, the approach is agnostic to the program-
ming language or platform used to develop the application.
To demonstrate how Alpakka could be used in Android

research, we applied it to the detection and automatic correc-
tion of resource leaks. However, Alpakka’s potential extends
far beyond this. Its ability to analyze and transform APK files
opens up possibilities for a wide range of tasks, including
performance optimization and malware detection.

To assess Alpakka’s performance for the specific use case
of detecting and correcting resource leaks, we executed it
on 124 Android APK files from a diverse set of 31 real-world
open-source applications from the DroidLeaks [12] dataset.

In summary, our main contributions are:
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• Alpakka, a source-to-source compiler for Android’s
Smali syntax, capable of performing analysis and mod-
ifications on most Android apps without requiring
access to the original codebase.

• An easy-to-use Alpakka API for building Control Flow
Graph representations of Android apps.

• Alpakka libraries for detecting and automatically cor-
recting resource leaks in Android apps.

• An evaluation of Alpakka with 31 real-world applica-
tions from the DroidLeaks dataset (124 APKs).

• A comparative analysis of Alpakka’s performance against
other state-of-the-art resource leak detection and re-
source leak correction tools.

2 Background
2.1 The Android Application
Android applications are installed via Android Packages
(APKs), a standard format used for this purpose. An APK file
is a compressed archive (ZIP file) that encapsulates all the
components necessary for an Android application to func-
tion. Among other things, it contains the application’s code
in Dalvik Executable (DEX) files. The Dalvik bytecode [8]
in these DEX files is what is then compiled by the Android
Runtime (ART) when a user installs an application.

For the purposes of analysis and manipulation, DEX files
can be decompiled into either Java classes or Smali code.
Decompiling an APK to Java allows developers to take ad-
vantage of Java’s popularity and the plethora of existing
tools for code analysis and manipulation. However, this of-
ten results in broken or missing code due to the potential
inaccuracies in the translation from DEX bytecode to Java
source code. These issues usually make it unfeasible to re-
compile the code back into a functional APK.
It may seem unintuitive that decompiling to Java can re-

sult in such losses, especially since many Android apps are
originally created in Java. However, once the Java code is
compiled to DEX bytecode, various optimizations are applied
that complicate the reverse translation process. Additionally,
the use of obfuscators by developers to protect their code
can further complicate this task.
In contrast, decompiling an APK to Smali code avoids

these translation losses. Smali [10] is an assembler specif-
ically designed for Android’s DEX format. Its syntax was
inspired by the Jasmin assembler [14] and supports the full
functionality of the DEX format, making it a precise way to
represent the compiled code.

The Smali project also includes dexlib2, a library that pro-
vides functionality for reading, writing, and manipulating
DEX files. Dexlib2 facilitates various operations on DEX files
that make it an invaluable tool for those who need to decom-
pile, analyze, and recompile Android applications.
Also included in an APK is the application’s manifest, a

critical XML file that guides the Android OS in managing

an application and orchestrating its components. The mani-
fest provides a comprehensive overview of the application’s
structure, which is crucial to effectively detect resource leaks
in Android apps. In this manifest, a developer outlines the
various components that make up the app and how they in-
teract with the Android framework, providing insights into
an app’s entry points.

A typical Android app may contain multiple entry points.
From multiple activities to other kinds of components such
as broadcast receivers, services, and content providers —
declared in the manifest and invoked independently by the
system. Each component has its own lifecycle1 that defines
how it is created and destroyed. As a component changes
its lifecycle state, different callback methods are invoked,
offering developers precise control over the component’s
behavior at various stages.

Resource management across the lifecycle of a component
is a critical aspect of Android app development, essential for
ensuring efficient performance and optimal user experience.

2.2 Resource Leaks in Android
Improper management of resources throughout a compo-
nent’s lifecycle can lead to issues such as resource leaks.
These leaks occur when an application acquires a resource
but fails to release it properly when it ceases to be needed.

For Android applications to acquire system resources, de-
velopers must use the appropriate resource-acquiring APIs
provided by the Android platform. Once the resources are no
longer needed, developers should invoke the corresponding
release methods to dispose of the resources properly. This
practice is essential because it enables the garbage collector
to efficiently reclaim memory and other resources, ensuring
that the application runs smoothly and does not encounter
issues related to resource exhaustion.
Resource leaks can result from various issues, such as

exceptions interrupting the normal execution flow or simply
overlooking a resource release in certain execution paths.
These leaks can persist until the app is fully closed by a user,
causing a range of detrimental effects, directly impacting
performance, stability, and energy efficiency.
Consider the example presented in Figure 1. The Cursor

class provides isBeforeFirst() and isAfterLast() methods to
check the current position of a cursor relative to a result
set returned by a database query. In this snippet, the cursor
is closed inside a conditional clause that verifies the cursor
is not null, is not closed, and is not pointing towards the
positions before the first row or after the last row of the
query result (i.e. it must be positioned between the first and
last rows of the query result).

1https://developer.android.com/guide/components/activities/activity-
lifecycle
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Under normal circumstances, a cursor can only be either
before the first row or after the last row, but not both simul-
taneously. However, there is a specific scenario where both
isBeforeFirst() and isAfterLast() can return true: when the
cursor is empty, meaning it contains no rows. In this case,
the cursor is technically positioned before the first row and
after the last row simultaneously because there are no rows
to navigate to, yet it remains open.
We were able to detect this resource leak using Alpakka

and correct it automatically with the solution presented in
Figure 1. In this solution, we check if the cursor is not null
and is still open, then close it after it is no longer necessary.

Cursor c = db. fetchTransactions (...);
if (!( c == null || c . isClosed () ||
(c . isBeforeFirst () && c. isAfterLast ()))) {

...
c . close ();

}
+ if (c != null && !c. isClosed ()) {
+ c . close ();
+ }

Figure 1. A database cursor leak in Bankdroid2, detected
through Alpakka’s analysis of Smali code, via GitHub.

3 Related Work
While the subject of detecting and correcting resource leaks
in Android apps is not new, it persists as a critical concern
impacting battery life and user experience. In the existing
landscape, we can find:

• Detection tools—Primarily focused on detecting these
defects, offering insights into the presence of resource
leaks within code or an APK file;

• Refactoring tools—A subset of tools that actively
address these leaks, incorporating automated solutions
for fixing them.

In the following sections, we discuss tools in each of these
two categories.

3.1 Resource Leak Detection Tools
EcoAndroid [16, 18] is a detection tool for resource leaks in
Android apps. It is distributed as an open-source Android
Studio plugin, originally designed to identify and automat-
ically apply energy patterns in Java source code and later
expanded to incorporate resource leak detection. Although it
only supports Java, it poses as a convenient tool for develop-
ers looking to improve their application’s energy efficiency.
EcoAndroid detects leaks related to four critical Android
resources: Camera, Cursor, SQLiteDatabase, and WakeLock.
2https://github.com/liato/android-bankdroid/blob/f4fbbfd966a25a9c2e4
b0a5aca381b47c2f36ac1/src/com/liato/bankdroid/BankFactory.java#L201

In order to understand the application’s flow, EcoAndroid
builds a Control Flow Graph (CFG) using FlowDroid [2], a
powerful taint analysis tool designed for Android applica-
tions. FlowDroid’s primary purpose is to analyze the poten-
tial paths of sensitive data through an application, helping
researchers and developers identify security vulnerabilities,
such as information leaks or unauthorized data access. Flow-
Droid’s knowledge of Android components’ lifecycles and
its specific callbacks allows it to trace the flow of data across
different methods and components, providing insights into
how information propagates within the app’s codebase and
allowing the generation of a CFG that accurately represents
Android’s lifecycle.

Relda2 (REsource Leak Detection for Android) [21] is an-
other example of a resource leaks detection tool for Android
apps, in particular for Dalvik bytecode. By taking an APK
file as input, it builds a Function Call Graph to establish
call relations among methods and perform inter-procedural
analysis. Relda2 is capable of providing information on leaks
related to 45 Android resources. It provides detailed trace
information on potential resource leaks within the analyzed
application, aiding developers in pinpointing and addressing
these issues. Relda2 is built using Androguard [7], a tool
that allows for disassembling, decompiling, and analyzing
Android APKs to extract valuable information about their
structure and behavior.

E-APK [9] is a tool that extends Kadabra [5] to detect en-
ergy patterns in Android applications by decompiling APK
files to Java code and analyzing the result. The overarch-
ing goal is to understand if there is a difference in applying
this detection to decompiled code as opposed to the original
source code. Kadabra, as used in E-APK, is built on top of
the LARA framework [17], a Java-based framework for de-
veloping source-to-source compilers for code analysis and
transformations. For E-APK, multiple detectors were built
in the form of JavaScript scripts in order to locate energy
patterns in the Java code, whether decompiled from an APK
or original Java source code.
Vala [13] is a tool designed to detect resource leaks and

other bugs caused by variant lifecycles in Android apps —
problems that arise when an activity’s lifecycle deviates from
the standard sequence. Like other advanced analysis tools,
Vala [13] employs FlowDroid to build a CFG, which is in-
strumental in tracing the flow of resources and identifying
misuse patterns that can lead to leaks. VALA holds informa-
tion on 51 pairs of acquisition/release operations gathered
from previous studies.
Statedroid [22] is another noteworthy detector in the do-

main of resource leak detection for Android applications.
Its methodology involves taking an APK file as input and
employing FlowDroid to construct a Control Flow Graph,
enabling static analysis to identify resource leaks and other
energy-related issues by mapping out the application’s con-
trol flow and tracking resource usage patterns.

https://github.com/liato/android-bankdroid/blob/f4fbbfd966a25a9c2e4b0a5aca381b47c2f36ac1/src/com/liato/bankdroid/BankFactory.java#L201
https://github.com/liato/android-bankdroid/blob/f4fbbfd966a25a9c2e4b0a5aca381b47c2f36ac1/src/com/liato/bankdroid/BankFactory.java#L201
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3.2 Resource Leak Correction Tools
The following tools, in addition to detecting resource leaks,
also support the automatic correction of such leaks. RelFix [11]
and PlumbDroid [3] are examples of tools that offer auto-
matic correction capabilities. RelFix [11] is a refactoring tool
from the same developers behind Relda2 [21]. It addresses
resource leaks in Android applications by decompiling APK
files to Smali code using Apktool [20], a popular reverse
engineering tool for Android APK files. RelFix constructs
a Function Call Graph that maps out the methods invoked
within an Android Activity and forms an Activity Asynchro-
nous Graph linking each asynchronous callback method to
its corresponding Activity. With this information and the
resource leak report from the Relda2 detector, it is able to pin-
point every location where a resource is requested but never
released. It is then possible to apply to the Smali code the
corresponding release operation in the appropriate Android
lifecycle step.

PlumbDroid [3] takes a similar approach to RelFix in which
it decompiles an APK file to Smali code using Apktool and
builds a CFG using Androguard with the app’s resource
usage. This enables PlumbDroid to detect resource leaks and
insert resource release operations at appropriate points in
the code. It is currently capable of detecting leaks related to
13 types of Android resources, 9 of which are non-aliasing,
meaning their usage typically does not introduce multiple
references that alias one another. These are: AudioRecorder,
BluetoothAdapter, Camera, LocationListener, MediaPlayer,
Vibrator, WakeLock, WifiLock, and WifiManager.

3.3 Overview
The landscape of resource leak detection tools for Android
apps encompasses a variety of solutions, each with unique
strengths and limitations tailored to different stages of appli-
cation analysis and development. These tools can be broadly
categorized based on their input types and their approaches
to analyzing and refactoring code, as seen in Table 1.

EcoAndroid operates directly at the source code level, uti-
lizing IntelliJ’s Program Structure Interface to identify and
automatically apply energy patterns in Java source code.

Other tools, such as Statedroid and Vala, accept APK files
as input. Statedroid focuses on detecting general resource
leaks, while Vala specifically addresses issues caused by vari-
ant lifecycles.

By focusing on APK files, these tools become agnostic to
the original language or framework used to develop an app,
as all frameworks can compile to an APK format that can be
installed on any compatible device. This approach eliminates
the need for access to the application’s original codebase
and makes the tools independent of the language in which
the app was developed.
E-APK also accepts APK files but takes a different ap-

proach by decompiling them into Java code. This allows

E-APK to have the benefits of both being able to target APKs,
and take advantage of mature Java analyses, but prevents
modifications to the application.

RelFix and PlumbDroid introduce an extra layer of versatil-
ity by decompiling the DEX files in an APK into Smali code,
a lower-level representation of Android application code, to
detect and fix the resource leaks on the resulting decompiled
code. By working with Smali code, RelFix and PlumbDroid
can directly manipulate the bytecode to implement resource
release operations.
The decompilation to Smali is typically done using Apk-

tool [20], a widely-used reverse engineering tool for Android
applications. This is the case in both RelFix and PlumbDroid.
By employing Apktool to decompile an APK to Smali, we
obtain an accurate version of the application’s code that can
be effectively used for analysis and transformation.
However, decompiling an APK file with Apktool is not

without its challenges. Beyond converting the bytecode to
Smali, the tool also needs to decode various assets contained
within the APK, such as XML files and PNGs. Occasionally,
Apktool may encounter issues during this asset decoding
process, leading to failures that can make recompiling the
application impossible. Despite this, ApkTool remains a crit-
ical tool used in most projects for detecting and correcting
resource leaks.

It is worth noting that only a subset of these tools, such as
EcoAndroid, has been made publicly available and are ready
to be used in a practical manner in Android research. This
limited availability restricts the widespread adoption and
application of these tools across various studies and projects
focusing on Android application analysis and improvement.
Our solution adopts a methodology similar to existing

tools by building a Control Flow Graph to perform static
analysis and identify resource leaks in Android APKs. The
distinguishing feature of our approach lies in proposing a
script-based source-to-source compiler for Smali. Analysis
and transformations are implemented as libraries which can
be easily modified and distributed, avoiding modifications
to the compiler itself, which is responsible for interpreting
the scripts. This provides a versatile framework with readily
composable components, allowing for broader applicability
beyond resource leaks. In contrast with the previously men-
tioned tools, resource leaks serve only as a demonstration
of what is possible to achieve with Alpakka in regards to
Android research, given its script-based nature.

4 The Alpakka Compiler
4.1 LARA Framework
Alpakka is a source-to-source compiler for Smali code that is
built on top of the LARA Framework [17], a library meant to
simplify the development of source-to-source compilers. The
LARA Framework provides a comprehensive set of tools and
APIs that facilitate the creation of fully working compilers,
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Table 1. Details on some of the available tools to detect and correct resource leaks in Android.

Name Primary
Purpose

Input
Type

Analysis
Technique

Underlying
Technologies

Evaluated
Dataset

Detection
Results

Automated Fix
Capabilities

EcoAndroid
Energy pattern
and resource
leak detection

Java source
code

Control
Flow Graph FlowDroid DroidLeaks

(29 apps)

127 unique leaks,
86 true positives,
28 false positives

No

E-APK Energy pattern
detection

APK files /
Java source
code

Abstract
Syntax Tree

Kadabra,
LARA

420
open-source
apps

927 patterns in
source code, 823
in APKs

No

Relda2 Resource leak
detection APK files Function

Call Graph Androguard
103
real-world
apps

Flow-insensitive:
69 leaks, 47 TP,
Flow-sensitive:
121 leaks, 67 TP

No

RelFix Resource leak
correction APK files Function

Call Graph Apktool
427
real-world
apps

26 TP leaks in
165 apps flagged
for possible leaks

Yes

PlumbDroid
Resource leak
detection and
correction

APK files Control
Flow Graph

Apktool,
Androguard

DroidLeaks
(17 apps)

78 leaks,
70 true positives Yes

Statedroid
Energy pattern
and resource
leak detection

APK files Control
Flow Graph FlowDroid

100
open-source
apps

102 leaks,
83 true positives No

VALA Resource leak
detection APK files Control

Flow Graph FlowDroid
35
open-source
apps

6 true positives
in 35 apps with
verified problems

No

allowing developers to focus on the core aspects of their
analysis and transformations.
When working with LARA, developers build a Weaver

for a specific language using the framework’s toolkit. This
Weaver acts as a bridge between the source code and the
scripts. It allows the framework to interact with the source
code by exposing its structure and semantics in a way that
can be analyzed and manipulated by the scripts. Once the
Weaver is established, scripts can be created to perform de-
tailed analysis and apply precise transformations to a source
program. These scripts can be developed in either JavaScript
or TypeScript. The modular nature of this approach not only
enhances reusability and maintainability but also ensures
that it is possible to extend the compiler without modifying
the compiler itself, since new compiler passes are libraries
of interpreted scripts. This allows us to accommodate new
requirements in a straightforward and efficient manner.
Alpakka is also the first LARA compiler for a low-level

assembly-like language like Smali, since other LARA com-
pilers have targeted high-level languages, such as Java [5]
and C/C++ [4].

4.2 Alpakka’s Implementation
An overview of Alpakka’s workflow is illustrated in Figure 2.
Alpakka derives its name from the Icelandic word for pack-
age, “Pakka”, following in the footsteps of Smali and Dalvik,
which also have Icelandic roots. As the name suggests, the

Alpakka compiler accepts APK files as input, which it de-
compiles into Smali code using Apktool.
Once the APK is decompiled into Smali code, Alpakka

leverages Smali’s own ANTLR [15] parser to parse the ap-
plication’s Smali files. By utilizing Smali’s ANTLR parser,
Alpakka can accurately interpret the Smali code. From there,
it constructs an Abstract Syntax Tree (AST) with our own
Java objects, derived from the output of Smali’s ANTLR
parser, and capable of generating back Smali code that re-
flects changes in the representation.
Generally, in our representation, an Android application

is made up of Smali Class Nodes and various Assets, includ-
ing XML files like the Manifest, PNG resources, and other
necessary files that make up an Android application. This
structure allows for detailed analysis and manipulation of
both the code and the resources contained within the APK.

SmaliClass Nodes serve as the fundamental building blocks
of the APK file’s code representation. Each Class Node in-
cludes crucial information about the class itself, such as:

• Class Specification: Details about the class, including
its name and access modifiers.

• Superclass Specification: Information about the super-
class that this class extends.

• Implemented Interfaces: Specifications of any inter-
faces that the class implements.

Additionally, they can contain as children Method Nodes,
Field Nodes, and Annotations.
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Figure 2. Alpakka’s workflow.

Field Nodes contain details about the fields of the class,
including their access modifiers, type descriptors, and initial
values if provided.

Method Nodes include information on its specification,
such as the method’s access list, name, and prototype, pro-
viding a clear understanding of the method’s signature and
access level. As children, aMethod Node will have a sequence
of Statements representing the method’s body.

These statements can be:

• Labels: Used to mark positions within the code, often
as targets for jump instructions.

• Directives: Such as the registers directive, which indi-
cates the number of registers used by the method.

• Instructions: Actual operations to be performed, such
as a Goto instruction. Instructions are characterized
by an opcode — the operation code specifying the
instruction type — and Expressions.

When building the AST of an application’s Smali code,
we need to process and organize all components, ensuring
they can be easily manipulated while remaining compilable
back into an APK format. Handling large applications can be
memory-intensive, so we incorporated a filtering mechanism
to manage this complexity. This filter allows us to specify
which Smali files are of interest, for example, enabling us to
ignore libraries and focus on the core application’s code. This
selective processing makes the analysis of large applications
more feasible while still guaranteeing the filtered Smali files
are included when recompiling the application, ensuring
that the final APK remains complete and functional.

As a final step, we link references within the Smali code to
their corresponding declarations by mapping method calls,
class references, label references, and field references to their
respective definitions within the codebase, enriching this in-
termediate representation with semantic information. This
AST is then used in our compiler so we can work with the
representation of these objects in our scripts. Any transfor-
mations applied to the AST will be reflected in the output
code it generates and consequently in the output APK, since
we rebuild the app back into APK format with Apktool.

5 Detecting and Correcting Resource Leaks
5.1 The Application’s Flow
In order to effectively detect resource leaks in Android apps,
we need to understand the program’s flow. This allows us to
identify where resources are acquired and ensure they are
properly released. To achieve this, we developed a Control
Flow Graph API specifically designed for use with Smali
code within Alpakka. This API provides a powerful tool for
analyzing the control flow of Smali code, enabling us to
perform dataflow analysis and pinpoint potential resource
leaks with precision.

Other LARA-based projects have already developed their
own Control Flow Graph APIs. Notably, Clava’s implemen-
tation recently underwent a refactor to enhance type safety
with Typescript in an effort dubbed Clava Flow [6]. For our
project, we leveraged the foundational structures from Clava
Flow and focused on adapting the graph’s creation to suit
the unique aspects of Smali code.
Smali is a lower-level representation of Android applica-

tion code, distinct from higher-level languages like Java. In
Smali, constructs such aswhile or for loops are absent, and in-
stead are represented through combinations of if conditions
and goto statements.
Typically, when executing a Smali program, instructions

are executed sequentially, with the following exceptions:

• Goto statements: These cause an unconditional jump
to a specified label, altering the natural sequential flow.

• If conditions: If the specified condition is met, execu-
tion jumps to a referenced label; otherwise, it proceeds
with the instruction immediately following the if con-
dition.

• Switch statements: If a register’s value matches a
switch case, execution jumps to the corresponding
label; if no match is found, it continues with the in-
struction following the switch statement.

• Return and throw statements: These can terminate
the execution of the current function, returning control
to the caller or throwing an exception.
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• Try-catch blocks: These define a range of instruc-
tions (from start to end labels) within which excep-
tions are monitored. If a matching exception occurs,
the execution jumps to the catch block specified by a
third label.

Notably, try-catch blocks present a unique challenge: de-
termining whether an instruction within a try block throws
an exception. Other tools for building CFGs of Smali code,
such as Androguard, adopt a conservative approach and as-
sume that at the end of a set of instructions within a try
block, there could be a jump to a catch label. However, this
assumption oversimplifies the problem and does not capture
the full complexity of exception handling in Smali.

Using Smali’s dexlib2, which provides specific information
about which opcodes can potentially throw exceptions, com-
bined with Google’s documentation on Dalvik bytecode [8],
we can get insights that allow us to more accurately model
control flow by identifying precise points where a jump to
a catch label might occur and the specific exceptions that
might be thrown. However, there are still some situations
where we cannot be certain an exception will be thrown. In
these cases, we conservatively assume the instruction will
throw a generic java/lang/Exception as all Android excep-
tions inherit from this type. This more conservative approach
can lead to an overestimation of potential exception paths
which may not precisely reflect the actual program behavior,
leaving room for future refinement.
A particular challenge arises with certain invoke instruc-

tions, that utilize dynamic dispatch to determine the method
being invoked, meaning the actual method is determined at
runtime based on the type of the object, preventing static
analysis from determining, in the general case, whether an
exception can be thrown. For instance, consider the follow-
ing Smali code snippet:

invoke-virtual v0, Ljava/io/Closeable;->close()V

In this example, the invoke-virtual instruction calls the
close method on a Closeable object present in register v0. The
precise implementation of the close method is determined at
runtime based on the actual type of the object assigned to
v0, which could be an instance of android.database.Cursor,
java.io.InputStream, or any other class implementing the
Closeable interface.
Additionally, compiled APK files do not include system

libraries. Consequently, if a system API is invoked, our cur-
rent information may be insufficient to ascertain whether
an exception will be thrown. To overcome this limitation,
we would need to supplement our analysis with additional
information, such as data from the Android JAR file contain-
ing the compiled classes of Android APIs, which is a part
of the Android SDK. While this is outside the current scope
of our project, it stands as a promising avenue for future
enhancement. By incorporating insights from the Android

JAR file, we could extend Alpakka’s capabilities, making it
more robust and versatile.
By thoroughly understanding these constructs and their

interactions, our Control Flow Graph API within Alpakka
can effectively model the flow of Smali code functions.
As mentioned previously, Android relies heavily on the

use of callback functions to manage application behavior.
When a user interacts with an application, the system orches-
trates the invocation of these callback methods. Because of
this, simply examining an application’s Smali code does not
always reveal the sequence in which functions are called. Un-
derstanding this sequence requires knowledge of the lifecycle
of the specific component being analyzed, which follows a
standard pattern for each component type.
To address this, Alpakka reads an application’s manifest

to accurately identify the declared activities and service com-
ponents within the application. This information is vital for
understanding the overall structure and flow of the appli-
cation and tracking resource allocation and release points
throughout the application.

5.2 Detecting Resource Leaks
For detecting resource leaks, we designed a JavaScript li-
brary for Alpakka. These libraries facilitate interaction with
Smali code by manipulating the elements of our AST rather
than working directly with the Smali code. This approach
simplifies complex tasks by including a variety of helper
methods that streamline the analysis process. For instance, it
can easily check if a method is static, a critical factor that in-
fluences the number of registers available in a given function.
By abstracting these lower-level details, Alpakka allows for
more intuitive and higher-level code transformations in its
scripts, making it easier to track resource usage and identify
potential leaks.
The detection process begins with building the applica-

tion’s Control FlowGraph, generating a CFG for eachmethod.
Next, the application’s declared components are identified
through the manifest. For each component, we systemati-
cally traverse the control flow graph of the standard callback
methods (e.g., onCreate, onStart, onResume, onPause, on-
Stop, onDestroy for activities) and perform our dataflow
analysis. This traversal is essential for pinpointing where
resources are acquired and ensuring they are subsequently
released.

For this detection, we rely on predefined knowledge, that
can be provided by a user, of whichmethod calls generate spe-
cific resources and the corresponding close operations nec-
essary to release them. A more generalized approach could
be possible as most resources in Android applications are
implementations of the Closeable interface, which provides
a standard method for releasing resources. This could poten-
tially simplify our detection process by allowing us to iden-
tify resources through their implementation of the Closeable
interface. However, this generalized strategy presents some
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incompatibilities with our current approach. As previously
mentioned, compiled APK files do not include system li-
braries, meaning that from the decompiled application alone,
we cannot determine if a particular resource implements the
Closeable interface. This is another situation where addi-
tional information, possibly from Android’s JAR file, would
be needed to supplement our analysis.
To add the capability to detect a new Android resource

within our library, one simply needs to provide the following
comprehensive details:

• Resource Class: The class of the resource we want to
analyze.

• Acquisition Information: The classes and correspond-
ing methods used to acquire the resource.

• Release Information: The classes and methods used to
release the resource.

• Verification Methods: Methods that check if a resource
has already been released.

• Resource Instance Behavior: Information on whether
the acquisition method always returns the same in-
stance of the resource or creates a new instance each
time.

• Dependent Resources: Whether the resource has any
dependent resources that might affect its management.

For our current work, we supplied it with information on
three Android resources:

• android.database.sqlite.SQLiteDatabase
• android.database.Cursor
• java.io.InputStream

Part of this information, seen in Table 2, particularly for
SQLiteDatabase and Cursor, was initially retrieved from Ex-
tending EcoAndroid’s [16] project. We supplemented this
with additional details on both these resources and Input-
Stream. The rationale behind selecting these specific re-
sources, besides their widespread use in the Android land-
scape, is that they are also relatively common in the Droi-
dLeaks dataset, making them a representative sample of
Closeable resources that are susceptible to leak issues.
SQLiteDatabase and Cursor are pivotal in handling data-

base operations, enabling efficient data manipulation and
retrieval. InputStream, on the other hand, is crucial for var-
ious input operations, such as reading data from files or
network streams. These resources are prone to leaks if not
properly managed, making them excellent candidates for our
analysis and detection methods.
Although EcoAndroid’s project included two other re-

sources, Camera and Wakelock, we opted not to include
them in our study. Despite not implementing the Closeable
interface, these resources generally follow a similar acqui-
sition and release pattern, which theoretically makes their
inclusion straightforward. This decision was influenced by
our lack of familiarity with them and their specific chal-
lenges.

To identify situations where resources have been acquired
but not released, the analysis tracks acquired resources, not-
ing the registers in which they are stored, operations where
they were last involved, and any associated class fields. For
each function we encounter, we perform an interprocedural
analysis, visiting each statement, while maintaining a list
of visited nodes along with a state object for the resource
leaks at the time of each visit. In our strategy, if the control
flow loops back to a previously visited statement, we verify
whether the state of leaks has changed. If the incoming re-
source states differ, we merge the incoming resource maps
using a conservative join operation and reprocess affected
parts of the CFG from that node onward.

When merging resource states, we need to address scenar-
ios where different incoming nodes have tracked the same
resource leak across different statements. In such cases, we
attempt to consolidate these instances by identifying a valid
common node further along in the execution path — a post-
dominator. If this is not feasible, possibly due to the register
where the resource was present being overwritten in at least
one of the incoming branches, we maintain references to
both statements where the resource leak was detected.

Furthermore, in situations where two distinct resources of
the same type are created along divergent paths but utilize
the same register, we aim to synchronize their release opera-
tions at a common point ahead in the execution path. This
approach ensures that all potential leak points are accounted
for and that our analysis remains comprehensive.

For each Smali instruction we visit, we apply the following:

• Register Setting: We first determine if it can set a
result in a register, possibly altering our current infor-
mation. For this, we once again take advantage of the
information Smali provides on instruction opcodes to
identify instructions that can set a register.

• Track Register Usage:We then identify the registers
involved in the instruction to maintain an accurate
record of where we last saw a resource. This helps
in tracking the lifecycle of resources throughout the
function’s execution.

• Method Calls: We establish if the instruction is a
method call we can process by checking if a function
exists in a given class or in any of its superclasses. If it
is, we combine the results from this processing with
our existing resource leaks map.

• Resource Acquisition and Release:We verify if the
instruction pertains to resource acquisition or release.
If so, we update our resource leaks map accordingly.

• Field Operations:We evaluate whether the instruc-
tion involves setting or getting a field reference. When
it does, we update our fields information to reflect this.

• Resource State Validation:We identify operations
that check the state of a resource, such as determining
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Table 2. The Android resources analyzed with Alpakka and relevant information on each of them.

Resource Acquisition Release Verification
Method

Single
Instance

Has
DependentsClass Methods Class Methods

SQLiteDatabase SQLiteOpenHelper getReadableDatabase
getWritableDatabase

SQLiteClosable
SQLiteDatabase
SQLiteOpenHelper

close isOpen True True

SQLiteDatabase SQLiteDatabase
Context openOrCreateDatabase

SQLiteClosable
SQLiteDatabase
SQLiteOpenHelper

close isOpen False True

Cursor SQLiteDatabase
ContentResolver

query
rawQuery
queryWithFactory
rawQueryWithFactory

Cursor
Activity

close
startManagingCursor isClosed False False

InputStream

ContentResolver
Context
Resources
AssetManager
URL

openInputStream
openFileInput
openRawResource
open
openStream

InputStream close - False False

if it has been closed. The result is later used to accu-
rately reflect the resource states in conditional nodes,
as these checks often influence subsequent code.

• Register Moves: We examine if the instruction is a
move operation involving registers that hold relevant
information. If so, we update our data to track these
changes.

• Return Statements: We determine if the instruction
is a return statement that returns a value currently
associated with an acquired resource.

By following this approach, we ensure that we can track
and manage resource leaks throughout the application’s con-
trol flow, allowing us to identify complex leak scenarios that
may arise due to intricate control flow patterns.

5.3 Correcting Resource Leaks
From our resource leak analysis, we derive a list of acquired
resources that are yet to be released, organized on a per-class
basis. This information provides developers with the nec-
essary insight to manually address these issues by locating
the exact lines in the code where resources are mishandled.
However, since resource management typically follows con-
sistent patterns, we can leverage this same information to
implement automatic corrections, significantly reducing the
time and effort required for manual fixes.
From the predefined knowledge of the resources we are

analyzing, we know the necessary methods to invoke a re-
source’s release and the methods to verify if a resource has
not been released previously. To ensure we do not disrupt an
application’s functionality, we deliberately avoid correcting
resources with sub-dependencies, such as SQLiteDatabase,
which can create Cursors. Closing the SQLiteDatabase can
restrict further Cursor operations, potentially causing unin-
tended issues.
In our approach, we first verify if the leak occurred in

a component with a known standard lifecycle, such as an

activity or a service. If this is not the case, we release the
resource at the last point where it was found. For components
with standard lifecycles, we save the resource in a class field,
allowing us to retrieve and release it as soon as possible
based on the callback during which it was acquired. As a
final safeguard, we ensure the resource is released in the
onDestroy callback if no earlier opportunity arises.
To release the resource, we create a new method that

attempts to release it only if it is available. This involves first
checking if the resource is not null and verifying if it has
not been previously released, provided the resource has a
method that allows such verification.

Initially, we encountered issues where invoking this new
method in certain situations led to compilation errors, mak-
ing it impossible to recompile the files into an APK. This
problem arose because we used an invoke-static operation,
which limits argument registers to a 4-bit address, restrict-
ing us to registers v0 through v15. To overcome this chal-
lenge, we switched to using the invoke-static/range operation,
which allows argument registers addresses to be up to 16 bits.
However, the iput-object operation we were using for saving
resources in class fields suffers from the same 4-bit register
address limitation, and in this case, the solution is not as
straightforward, necessitating further operations, thereby in-
creasing the risk of inadvertently breaking the application’s
functionality. Since our priority is to maintain the applica-
tion’s stability and functionality, for the time being, we do
not address situations where resources fall into this category.
All modifications are made possible through Alpakka’s

insertion methods, which enable us to alter the Smali code
based on the contents of the AST. This ensures that changes
in the AST are reflected in the generated Smali code. The inte-
gration and implementation of these insertion methods were
significantly streamlined by utilizing the LARA Framework.
Once the corrections are applied, Alpakka compiles all

files back to an unsigned APK format using Apktool.
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6 Alpakka’s Results
6.1 Evaluation
All of our testing was performed on a 2022 Zephyrus G14
laptop equippedwith an AMDRyzen 7 6800HS processor and
16GB of DDR5 memory, running Windows 11 and Node.js
version 20.10.0.

We tested the effectiveness of our resource leak detection
library in real-world applications by applying our script to
the applications in the DroidLeaks dataset. When resource
leaks were identified, the script subsequently ran our correc-
tion library, utilizing the gathered information to apply the
necessary fixes. After the corrections are made, the script
generates a new APK file with the applied modifications.
The DroidLeaks work is comprised of 292 manually ver-

ified resource leaks in 32 open-source Android apps. Out
of these, 189 are of types we currently support in Alpakka,
13 pertaining to android.database.sqlite.SQLiteDatabase, 143
associated with android.database.Cursor and 33 involving
java.io.InputStream. However, DroidLeaks does not publicly
provide all the APK files used in their work. Among the 189
resource leaks we would be able to support with Alpakka,
only 50 are identified in the publicly available dataset, 38 of
Cursor, 9 of InputStream and 3 of type SQLiteDatabase.
The resource leaks in the DroidLeaks dataset were origi-

nally identified using an automated script that scanned com-
mit messages for keywords related to resource leaks. This
approach means the dataset is non-exhaustive, as there can
be additional resource leaks within these applications that
were not captured by the script.

With this in mind, we executed our Alpakka script on
all the 138 APK files publicly available in the DroidLeaks
dataset, in some cases encompassing multiple versions of the
same applications, filtering our search to exclude third-party
libraries and focus on application-specific code. We were
able to detect 93 unique leaks, 32 of which are identified in
DroidLeaks, as seen in Table 3.

Table 3. Resource leaks detected with Alpakka in the Droi-
dLeaks dataset.

Resources Leaks

# Found Of Which Are
In DroidLeaks

android.database.sqlite.SQLiteDatabase 19 1
android.database.Cursor 67 31
java.io.InputStream 7 0
Total 93 32

Notably, we encountered issues when attempting to run
our library on several versions of the K-9 Mail application
included in the DroidLeaks dataset. This was due to a yet
unresolved bug in our tools, which caused an unexpectedly
high consumption of heap memory. Consequently, we were
unable to process all versions of K-9 Mail effectively. The

K-9 Mail application is known to include 12 leaks of type
InputStream and 2 of type SQLiteDatabase, with at least 3 of
the type InputStream being included in the publicly available
APK files. Despite the challenges, we were able to success-
fully detect the two SQLiteDatabase leaks in the versions
we managed to execute. However, due to the incomplete
analysis across all versions of K-9 Mail, we have decided to
exclude these versions from our overall totals.
The reasons some of the leaks described in DroidLeaks

were not detected are varied:
• One of the leaks was present in a test file that is not
included in the compiled APK file. Since our analysis
focuses on the compiled APK file, any leaks in test files
would not be detected.

• Multiple leaks occurred in methods that were never
actually reached during the program’s execution, as
appears to be the case with nameExists() in Google
Authenticator3. As we rely on analyzing the dataflow
of the application, following possible execution paths,
if a method is not invoked during any execution path,
it will not be analyzed.

• Some others were not accounted for due to gaps in
our documentation of Android’s lifecycle callbacks.
Android applications can have complex lifecycle meth-
ods, and we did not exhaustively document all possible
callbacks for every component. This means that some
undetected leaks may be a result of less common un-
documented callbacks.

Interestingly, of the 32 detected resource leaks that were
also identified inDroidLeaks, only 16 of themwere associated
with the publicly available APK files. The remaining 16 were
linked to different versions of the applications tested, which
are not included in the public dataset. However, according
to our tool, these leaks were already present in the versions
we tested.

Effectively, our automated approach successfully detected
32 of the resource leaks identified in the DroidLeaks dataset.
The majority of the undetected leaks were attributed to ex-
ecution paths that were never reached, either because the
methods were never actually invoked or because our anal-
ysis did not fully account for the specific lifecycle of the
Android components involved. However, in these situations,
we found it is still possible to achieve successful detection
results manually. By leveraging the findResourceLeaksInFunc-
tion method in our library, developers can manually analyze
specific functions to identify resource leaks that our auto-
mated process might miss.

The manual use of our library’s findResourceLeaksInFunc-
tion method provides a viable fallback, with the feasible
future possibility of creating an automated intraprocedural

3https://github.com/google/google-authenticator/blob/f7dee7574d30fb7
f948acdc1ccc9fe2e0fcdc432/mobile/android/src/com/google/android/apps
/authenticator/AccountDb.java#L76

https://github.com/google/google-authenticator/blob/f7dee7574d30fb7f948acdc1ccc9fe2e0fcdc432/mobile/android/src/com/google/android/apps/authenticator/AccountDb.java#L76
https://github.com/google/google-authenticator/blob/f7dee7574d30fb7f948acdc1ccc9fe2e0fcdc432/mobile/android/src/com/google/android/apps/authenticator/AccountDb.java#L76
https://github.com/google/google-authenticator/blob/f7dee7574d30fb7f948acdc1ccc9fe2e0fcdc432/mobile/android/src/com/google/android/apps/authenticator/AccountDb.java#L76
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analysis process that checks each function in an application
individually for resource leaks.
From our analysis, in which we detected 93 unique re-

source leaks, we estimate that approximately 15% of these
detected leaks are false positives. This estimate is based on a
manual review of a sample of these results which revealed
that this rate of false positives stemmed primarily from the
previously mentioned limitation in our Control Flow Graph
modeling. Specifically, the lack of detailed information on
whether certainmethod calls will throw an exception, forcing
us to conservatively assume that an instruction can throw an
exception when it will not actually do so. Consequently, this
limitation results in an overestimation of potential execution
paths, leading to some inaccuracies in leak detection.
For some leaks, DroidLeaks includes both the version of

the app containing the defect and the fixed version corrected
by the original developer. Interestingly, during our analysis,
we discovered some resource leaks remained present in the
APK files where they were supposedly manually corrected.
This occurred because the applied corrections were not effec-
tive in all execution branches of the program, as is the case
with the code presented in Figure 1. This emphasizes the
need for more comprehensive analysis tools that can ensure
resource management is properly addressed.

It is worth noting that three apps, CallMeter, CSipSimple,
and Open-GPSTracker, encountered issues during the re-
building process with Apktool. These arose due to problems
decompiling their assets, making it impossible to recompile
them back into a functional APK format. This could perhaps
be solved using a different configuration for Apktool.
By running our script again on the corrected APK files

generated by Alpakka, we verified that our library success-
fully and automatically corrected 45 resource leaks, as seen
in Table 4. Specifically, we achieved the automatic correc-
tion of 45 resource leaks across all execution branches in
which they occurred. This was out of a total of 74 detected
leaks involving InputStream and Cursor resources. Our cur-
rent solution does not attempt to release SQLiteDatabase
resources due to the possible dependencies associated with
them, which could potentially lead to unintended issues in
the application’s functionality.

Table 4. Number of resource leaks automatically corrected
with Alpakka.

Resources # Leaks Found # Leaks Fixed
android.database.Cursor 67 43
java.io.InputStream 7 2
Total 74 45

Additionally, for resources held in registers exceeding 4
bits, we did not apply corrections for the time being. Address-
ing these cases would necessitate further move operations,
a situation we are not addressing for now.

To test Alpakka on more modern Android apps, we ex-
ecuted it on a small set of randomly selected APKs. Since
the selection did not include any known resource leaks, our
findings were limited. However, an interesting observation
emerged: Alpakka identified a reference to a SQLiteDatabase
object that was never released in a launcher app4. Upon fur-
ther investigation, it appears this was intentional on the part
of the developer, as the database seems to be essential to
the core functionality of the app, but it highlights Alpakka’s
ability to flag potential issues.

6.2 Comparing with others
Comparing the performance of our library with existing
resource leak tools that were executed on the DroidLeaks
dataset, we can understand its strengths and limitations.

The DroidLeaks work already includes a comparison that
we can build upon, on the detection performance of several
popular tools, including some that are not specifically aware
of Android components’ lifecycles.
In their analysis, they ran these tools on a subset of the

DroidLeaks dataset. They then compared the tools’ bug de-
tection rates, which were calculated based on the proportion
of known bugs the tools were able to detect in the experi-
mented faulty apps, and their false alarm rates, calculated
by how many of these bugs the tools detected in the corre-
sponding patched apps relative to the known bugs present
in the faulty apps.

Of the resource leaks used for this comparison, 50 of them
are identified as involving one of the three resource types our
Alpakka library supports. However, 2 of these were within
versions of K-9 Mail we were unable to analyze. Therefore,
our analysis focuses on the remaining 48 leaks.
Alpakka’s library achieved a bug detection rate of 33.3%,

successfully identifying 16 out of 48 experimented leaks.
More importantly, Alpakka demonstrated a low false alarm
rate of 2.1%, showcasing its reliability.

The one false alarm was encountered in the getConversa-
tion method of SMSDroid. Here, the use of the synchronized
keyword in Java encapsulates the entire method within a
try-catch block when translated to Smali code. Due to our
previously mentioned limitation in the modeling of the CFG,
our analysis flagged a resource leak as still present in a pos-
sible execution path, based on the information available in
the Control Flow Graph, even though the leak had already
been properly addressed.
Based on PlumbDroid’s publicly available information,

we estimate it could be applied on 15 bugs present in the
DroidLeaks dataset. Of these 15 bugs, PlumbDroid would
likely detect approximately 7, yielding a bug detection rate
of 47%. Additionally, given the methodology and accuracy
described, its false alarm rate would likely be very low.

4https://github.com/Neamar/KISS/blob/master/app/src/main/java/fr/ne
amar/kiss/db/DBHelper.java#L23

https://github.com/Neamar/KISS/blob/master/app/src/main/java/fr/neamar/kiss/db/DBHelper.java#L23
https://github.com/Neamar/KISS/blob/master/app/src/main/java/fr/neamar/kiss/db/DBHelper.java#L23
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Table 5. Comparison of different resource leak detection tools executed on the DroidLeaks dataset.

Detector # Experimented
APKs

# Detected
Unique Bugs # True Positives # Corrections

Made
Alpakka 124 93 79 (estimated) 45
EcoAndroid Extended 107 127 86 NA
PlumbDroid 17 50 44 45

With these results, we consider Alpakka to be an interest-
ing alternative to existing tools for detecting and correcting
resource leaks, striking a balance between detection rate
and false alarm rate, making it a practical tool for Android
research and development.
Going beyond this test, the authors of some of the pre-

sented tools conducted a broader analysis by executing them
on a wider set of applications from the DroidLeaks dataset,
to identify resource leaks in apps that supposedly did not
include any identified leak. It is important to note that not
all tools were tested on the same number of applications. De-
spite this, we can still draw meaningful comparisons based
on the available data, as illustrated in Table 5.

EcoAndroid was executed on 107 APK files from the Droi-
dLeaks dataset, detecting 127 unique leaks, 86 of which the
authors confirmed as true positives.

PlumbDroid was tested on 17 applications from the Droi-
dLeaks dataset, detecting 50 resource leaks. Of these, 6 were
deemed inconclusive, and 5 of the automatic fixes were
deemed invalid. However, based on the corrections data pro-
vided by the authors, it appears that several of the detected
leaks were in third-party libraries integrated into the appli-
cations. As such, since many Android apps end up using
the same third-party libraries, we are not sure about the
uniqueness of the detected leaks.

Our Alpakka library was executed on 124 APKs from the
DroidLeaks dataset, which corresponds to the entire public
dataset of 138 files, excluding the APKs for K-9 Mail. In this
analysis, we detected 93 unique resource leaks. However,
based on our findings, we estimate that approximately 15%
of these detected leaks are false positives due to a limitation
in our Control Flow Graph modeling, leading to some inac-
curacies in leak detection. It is worth noting our analysis
was filtered to ignore code in third-party libraries and to fo-
cus on application-specific code, ensuring that the detected
leaks were specific to the application’s own codebase and
not influenced by external libraries. Additionally, we were
able to automatically apply fixes to 45 of the leaks detected.

In summary, while our Alpakka library still has room for
improvement, it has already demonstrated its effectiveness
as a tool for detecting and correcting resource leaks in An-
droid applications. Alpakka’s performance, when compared
to other available options, shows promising results, indicat-
ing its potential as a valuable asset for developers concerned
with resource management issues. This demonstrates how

Alpakka could be used in Android given its versatile founda-
tion, that can be adapted and extended to meet a wide range
of research needs.

7 Conclusion
Using Alpakka, our source-to-source compiler for Smali, and
leveraging the CFGAlpakkaAPI we developed in this project,
we created JavaScript libraries that enable the identification
and automatic correction of resource leaks in Android APKs.
Alpakka allowed for precise analysis and transformations at
the bytecode level without requiring access to the original
source code of an Android application.
Our extensive testing on 124 APK files from the Droi-

dLeaks dataset, alongside comparisons with existing solu-
tions, confirm that Alpakka is effective in detecting and recti-
fying resource leaks. We detected 93 resource leaks, of which
we estimate 15% are false positives due to a limitation in our
CFG modeling. From these, we successfully applied auto-
matic fixes to 45 of the detected resource leaks. Given its
flexibility, we believe Alpakka could be a good fit for other
research applications beyond resource leaks, such as employ-
ing static analysis for the detection of malware patterns in
Android apps or applying performance optimizations in an
automated way.

As future work, Alpakka could be significantly enhanced
by incorporating information retrieved from the Android
JAR file included with each version of the Android Software
Development Kit (SDK). This enhancement would enable
us to achieve a more precise representation of an applica-
tion’s Control Flow Graph. Additionally, this enriched data
would allow us to accurately determine whether resources
implement the Closeable interface — crucial for generalized
detection and correction strategies in resource leaks. Fur-
thermore, we also intend to add other future improvements,
such as a way to easily identify an APK file modified with
Alpakka, ensuring that they are not mistakenly passed off as
originals, preventing potential confusion and misuse.

Data Availability
This work is fully reproducible. We provide the complete
source code for Alpakka at: https://github.com/specs-
feup/alpakka. The Alpakka scripts used to obtain the data
and the obtained results are available at: https://doi.org/10
.5281/zenodo.14037002. The DroidLeaks dataset is publicly
available.

https://github.com/specs-feup/alpakka
https://github.com/specs-feup/alpakka
https://doi.org/10.5281/zenodo.14037002
https://doi.org/10.5281/zenodo.14037002
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