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Abstract—Code smells are anti-patterns that violate code un-
derstandability, re-usability, changeability, and maintainability.
It is important to identify code smells and locate them in the
code. For this purpose, automated detection of code smells
is a sought-after feature for development tools; however, the
design and evaluation of such tools depends on the quality of
oracle datasets. The typical approach for creating an oracle
dataset involves multiple developers independently inspecting
and annotating code examples for their existing code smells.
Since multiple inspectors cast votes about each code example,
it is possible for the inspectors to disagree about the presence
of smells. Such disagreements introduce ambiguity into how
smells should be interpreted. Prior work has studied developer
perceptions of code smells in traditional source code; however,
smells in Infrastructure-as-Code (IaC) have not been investigated.
To understand the real-world impact of disagreements among
developers and their perceptions of IaC code smells, we conduct
an empirical study on the oracle dataset of GLITCH—a state-
of-the-art detection tool for security code smells in IaC. We
analyze GLITCH’s oracle dataset for code smell issues, their
types, and individual annotations of the inspectors. Furthermore,
we investigate possible confounding factors associated with the
incidences of developer misaligned perceptions of IaC code smells.
Finally, we triangulate developer perceptions of code smells in
traditional source code with our results on IaC. Our study reveals
that unlike developer perceptions of smells in traditional source
code, their perceptions of smells in IaC are more substantially
impacted by subjective interpretation of smell types and their
co-occurrence relationships. For instance, the interpretation of
admins by default, empty passwords, and hard-coded secrets
varies considerably among raters and are more susceptible to
misidentification than other IaC code smells. Consequently, the
manual identification of IaC code smells involves annotation
disagreements among developers—46.3% of studied IaC code
smell incidences have at least one dissenting vote among three
inspectors. Meanwhile, only 1.6% of code smell incidences in
traditional source code are affected by inspector bias stemming
from these disagreements. Hence, relying solely on the majority
voting, would not fully represent the breadth of interpretation of
the IaC under scrutiny.
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Perceptions, Oracle Datasets.
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I. INTRODUCTION

Code smells are anti-patterns of code that indicate potential
design or implementation setbacks in software code bases [1],
[2]. Code smells violate code understandability, re-usability,
and changeability, and increase the cost of code mainte-
nance [3]. Hence, it is important to identify and locate code
smells. To efficiently detect code smells, various automatic
techniques are proposed [4]–[10]. The performance of these
techniques are primarily assessed by manually constructing
oracle datasets of code smell issues.

The oracle datasets are constructed by multiple developers
independently annotating whether a set of code examples are
prone to a list of smell types. If inspectors unanimously agree
on the identified code smell type and the line of code where
it is present, that line of code is annotated with the identified
smell type as its ground truth label and is included as an issue
in the oracle dataset. Since multiple inspectors cast votes about
each code example, it is possible for the inspectors to disagree
about existing types of code smells. In the case of disagree-
ment, the majority voting rule is applied—if the majority of
the inspectors identify the same code smell type at the same
line of code, that line of code is annotated with that specific
smell type as its ground truth. While the majority voting rule
can be applied to discretize code examples (i.e., code is either
smelly or it is not), it also conflates cases with unanimous
agreements with cases that have some degree of disagreement
or ambiguity. Cases with disagreements among inspectors raise
doubt about ground truth labels of oracle datasets and even can
degrade the performance of smell detection tools. Due to the
negative impact of this ambiguity, prior work has studied the
developer perceptions of code smells in traditional source code
[11]–[13]; however, developer perceptions of code smells in
other code-adjacent artifacts, such as Infrastructure-as-Code
(IaC), remains unexplored.

IaC is an emerging technique that is widely applied for
automating the infrastructure to enable repeatable, scalable,
and reproducible provisioning and imaging for systems with
varied configuration [14]. As such, DevOps engineers can
effectively manage the infrastructure using software develop-
ment and release tools such as version control systems and
continuous integration and deployment pipelines [14]. Due to
its extensibility and reproducibility, incidences of code smells
in IaC can have prominent negative consequences [15]. For
instance, Listing 1 provides a real-world code smell incident
in the Puppet code of OpenStack.1 This example defines a
notification transport layer and sets its attributes. The password
of the transport layer is set as a hard-coded string on line

1The code example is accessible at https://is.gd/EXloIs.
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Listing 1: Part of a real-world OpenStack Puppet code example
1 class { 'designate':
2 default_transport_url => os_transport_url({
3 'transport' => ’rabbit’,
4 'host' => $::openstack_integration::config::host,
5 'port' => $::openstack_integration::config::

rabbit_port,
6 'username' => 'designate',

7 'password' => 'an_even_bigger_secret', })

7. This is dangerous, as the hard-coded password can leak,
leading to a breach of sensitive data. In a similar scenario,
when public-read IaC scripts of Amazon Web Services S3
billing system are tainted with hard-coded passwords, attackers
can exploit them, causing a breach of end-user personal
information and catastrophic financial losses for the service
provider [16], [17]. Hence, in the current study we are set to
be the first to investigate oracle datasets of IaC code smells
for their possible subjectiveness and the implications these
ambiguities may have for practitioners and researchers.

For this purpose, we conduct an empirical study and as-
sess the extent to which oracle datasets of IaC code smells
are impacted by ambiguity due to inspector disagreements.
Specifically, we analyze the oracle dataset of GLITCH [15], a
state-of-the-art detection tool for IaC security code smells—
a particular family of smells which indicate the possibility
for security breaches [18]. GLITCH is the only automatic
detection tool for IaC code smells that provide complete access
to its oracle dataset. Furthermore, as discussed by Guerriero
et al. [19], IaC relies on heterogeneous tools with different
natures and code models contributing to various challenges.
Hence, the unique ability of GLITCH to detect various code
smell types in multiple IaC technologies, compared to other
detection tools such as Puppeteer [20] which only focuses on
detecting specific code smell types in limited technologies, is
an advantage for conducting the current study.

In our study, we also investigate whether confounding
factors, such as annotation tendencies of individual inspectors
or the types of code smells, are associated with the incidences
of the misalignment of developer perceptions of IaC code
smells. We structure our empirical study by addressing the
following research questions.
RQ1: How prevalent are labeling disagreements?

Motivation: Labeling disagreements can introduce uncertain-
ties and potential biases into the oracle dataset, consequently
degrading the detection performance of the tool. Hence, we
set out to understand to what extent developers disagree about
the presence and type of IaC code smells.

Results: Nearly half of the oracle issues (i.e., 43.4%–48.7%)
have some degree of disagreement among inspectors, suggest-
ing that the oracle dataset may be impacted by the conflation
of unanimous and ambiguous incidences of code smells.
RQ2: Do false alarms correlate with the annotations of the oracle
dataset?

Motivation: False alarms can substantially impact the effec-
tiveness of code smell detection tools, leading to distractions
for developers and eroding their confidence in the tools.

Annotation disagreements in the oracle datasets introduce an
ambiguity that is not reflected in the perceived performances
of the tools. Thus, in this research question, we set out to
study the extent to which the high rates of disagreements that
we observe in RQ1 impact the false alarms of GLITCH.

Results: In 53.6% of false alarms, the tool is entirely
incorrect—it identifies a code smell incident while inspectors
unanimously agree there exists no smell at the target line of
code. The remaining 46.4% of the false alarms are raised in
code for which at least one inspector raised a concern—either
there exists an oracle issue of a different smell type (i.e., 25.7%
of false alarms) or no two inspectors agree on the presence or
the type of a smell incident—20.7% of false alarms.
RQ3: How labeling disagreements distribute among inspectors?

Motivation: It is possible that labeling disagreements are
simply an artifact of a rogue inspector who always has a
different perception of IaC code smells from the rest. For
example, if one inspector incorrectly labels all instances of all
smells, this would inflate disagreement rates without indicating
anything of value about the underlying smell phenomenon
(apart from the need for better inspector training). To study
whether inspector tendencies explain labeling disagreements,
in this research question, we study how disagreements are
distributed among the inspectors.

Results: The distributions of labeling disagreements among
the inspectors range from 24.5% to 38.8%, 15.8% to 47.4%,
and 17.4% to 59.4% for Ansible, Puppet, and Chef IaC
settings, respectively. The results demonstrate that there is no
particular inspector who is disproportionately responsible for
disagreements about IaC code smells.
RQ4: How are labeling disagreements distributed across the
types of IaC code smells?

Motivation: It is also possible that labeling disagreements are
simply due to difficulty of labeling a particular smell type. For
example, if all of the disagreements occur because of one type
of smell, this would inflate disagreement rates for smells while
really being a localized problem with respect to that type. To
study whether type tendencies explain misaligned perceptions,
in this research question, we study how disagreements are
distributed among the studied types of IaC code smells.

Results: No single type of IaC code smell dominates, with
the most frequent types accounting for 1.6% to 35.4% of the
total disagreements; however, each inspector tends to disagree
more often about particular types of code smells.

Finally, we triangulate developer perceptions of code smells
in IaC with their perceptions of smells in traditional source
code. The results highlight the ambiguity of IaC code smell
definitions and their co-occurrence relationships compared to
smells in traditional source code. As such, 46.3% of IaC
code smells are affected by inspector subjective interpretations,
while only 1.6% of smells in traditional source code have an-
notation disagreements. This difference implies the necessity
of enforcing strategies to align developer perceptions of IaC
code smells before their attempt to annotate the oracle datasets.

In summary, our contributions are as follows.
• An empirical study that investigates the impact and

prevalence of disagreements in the identification of IaC
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code smells among developers. Furthermore, the study
compares developer perceptions of code smells in tradi-
tional source code and IaC.

• An investigation of confounding factors, influencing the
developer disagreements about code smells.

• A detailed replication package,2 which includes the data
and scripts to reproduce our results.

II. BACKGROUND AND RELATED WORK

In this section we explain key concepts, discuss prior work,
and summarize the original study of GLITCH [15].

A. IaC Management Technologies

IaC enables fast and continuous deployment through au-
tomating the provisioning of servers, configuration of hard-
ware, and instant instantiating of servers through imaging [21].
Among others, three of the most popular and widely adopted
IaC technologies are Ansible, Puppet, and Chef [19], [22].
All three technologies are open-source and offer enterprise
and community-level support, with the possibility of adapting
as cloud-based services [22]. Ansible and Chef code examples
provide step-by-step imperative instructions to achieve desired
end-states for software resources [23]; however, in Puppet, the
end-states for resources are only declared, while the details for
achieving those goals are decided by Puppet agent [22], [23].

B. IaC Security Code Smells

Similar to traditional source code, IaC can also be compro-
mised by anti-patterns, decreasing their quality and causing
them to be prone to defects and difficult to maintain overtime.
If these anti-patterns affect IaC security-related design and
implementation considerations, they are referred to as security
code smells and make IaC code examples susceptible to the
exploitation of their vulnerabilities [18]. Hence, it is important
to detect security code smells in IaC, effectively and in a
timely manner [4], [5], [24], [25].

C. Detection of Code Smells in IaC

Recent literature demonstrates a growing interest in identify-
ing and removing code smells within IaC code examples [26],
[27]. Applied research methods include qualitative analysis,
pattern-matching, and machine learning methods.
Qualitative Analysis. Rahman et al. [4] studied the seven
most frequent security code smell patterns in 1, 726 Puppet
code examples. They also conducted similar studies in Ansible
and Chef settings [5]. Rahman et al. [28] also studied Ansible
scripts to detect categories of code smells that directly infect
Ansible tasks. They conducted developer-focused surveys to
identify improper practices that lead to task infection. Sim-
ilarly, Bent et al. [23] surveyed developers to identify best
practices for delivering high-quality Puppet code examples.
Moreover, they created and validated a benchmark that ranks
the quality of the code examples. Dalla Palma et al. [29]
created a catalog of 46 metrics for evaluating the quality of

2The replication package is available at https://is.gd/6JcOqq.

Ansible code examples. These metrics are either obtained from
general purpose programming languages or are specifically
created for Ansible using the official documentation. Sharma
et al. [20] analyzed 4, 621 Puppet repositories to identify inci-
dences of code smells caused by lax design and configuration
related practices. Bessghaier et al. [30] evaluated 82 Puppet
examples for the prevalence of their co-occurring code smells,
on both design and implementation levels. Furthermore, they
investigated the impact of these code smells on the change
and defect proneness of IaC. Drosos et al. [31], conducted
a comprehensive analysis of 360 bugs in Ansible, Puppet,
and Chef to understand their manifestation characteristics,
underlying causes, reproduction requirements, and fixes.
Pattern-matching Methods. Rahman et al. [25] studied 1, 448
commit messages corresponding to Puppet code examples of
61 OpenStack repositories and used pattern-matching tech-
niques to identify the eight most prevalent types of code
smells in Puppet. Reis at al. [32] conducted a study with 131
practitioners and used their professional feedback to improve
the performance of pattern-matching techniques previously
designed for identifying code smells in Puppet code examples.
Machine Learning Methods. Other than using pattern-
matching techniques, Rahman et al. [33] applied natural lan-
guage processing techniques to the commit messages of Open-
Stack, Mozilla, and Wikimedia projects to identify incidences
of code smells in IaC. Dalla Palma et al. [34] mined 104
GitHub repositories with defective Ansible code examples and
used structural and evolution-based features to vectorize them.
Embedding were then used to train machine learning classifiers
for identifying different type of Ansible code smells.

D. Developer Perceptions of Code Smells

Prior work has investigated the developer perceptions of
code smells present in traditional source code. For instance,
Palomba et al. [11] studied whether Java developers perceive
bad code designs as intentional decisions or consequences of
undiscovered code smells. They also investigated developer
perceptions of the severity of existing code smell symptoms.
Chen et al. [12] studied Python code smells and compared
them to code smells of compiled languages. Based on the
discovered differences, Chen et al. introduced new metrics for
detecting code smells in interpreted languages. De Bleser et
al. [13] compared the code smells of Scala and JUnit test-
ing frameworks. They surveyed 14 developers and evaluated
whether they can correctly identify Scala code smells. The
relationship between developer characteristics, including their
education and professional role, and their perception of code
smells was also investigated. Mello et al. [35] found that the
expertise of developers shared a direct association with correct
identification of code smell instances. On the other hand,
Oliveira et al. [36] recommended to engage both novice and
experienced developers for identifying smells. Sharma et al.
[37] reviewed the literature to investigate the breadth of code
smells including their characteristics, identification techniques,
and prevailing inducing improper practices.

Inspired by aforementioned work, we are set to complement
prior studies by investigating varied developer perceptions of

https://is.gd/6JcOqq
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TABLE I: The types of IaC security code smells identified by
GLITCH (TLS: Transport Layer Security, Cryp. Alg.: Cryptographic
Algorithms)

Security Code Smell Types Description

Admin by Default Default users get admin privileges.
Empty Password Passwords are set as empty strings.
Hard-coded Secret Secret information stored in text.
Unrestricted IP Address IPs bound to ‘0.0.0.0‘.
Suspicious Comment Comments indicate defects/issues.
Use of HTTP without TLS HTTP used without encryption.
No Integrity Check No checksum for downloads.
Use of Weak Cryp. Alg. Weak encryption algorithms used.
Missing Default in Case Statement No default case in switch.

code smells in IaC—through analyzing discrepancies in the
annotations of incidences of code smells.

E. Summary of the Original Study

Saavedra and Ferreira [15] introduced GLITCH to detect
security code smells in Ansible, Puppet, and Chef.3 GLITCH
can detect nine categories of security code smells—the most
common security code smell types across the studied technolo-
gies (see Table I). The tool uses an intermediate representation
capable of abstracting similar IaC concepts in the supported
technologies. For instance, the concept of a task in Ansible and
a resource in both Chef and Puppet are mapped to the same
atomic construct. The intermediate representation is derived
from the original abstract syntax tree of the IaC code example
under investigation. GLITCH’s code smell detectors, which
are based on regular expression rules, are defined on this
intermediate representation, allowing the detection of code
smells in a consistent fashion among IaC technologies [15].

Saavedra and Ferreira [15] also evaluated GLITCH’s perfor-
mance by creating and annotating an oracle dataset consisting
of Ansible, Puppet, and Chef code examples. In total, seven
graduate students with three years of experience in computer
science, including software engineering, and one to two years
of focused expertise in IaC and/or cyber security (i.e., a total
of five years of expertise) annotated the oracle dataset of
GLITCH. Saavedra annotated all of the code examples. The
code examples of each IaC technology were annotated by two
inspectors in addition to Saavedra, resulting in a total of seven
unique inspectors. Closed coding [39] was applied to label the
oracle dataset for the incidences of the curated and predefined
catalog of IaC security code smells.

Three IaC developers inspected the code examples and
annotated them independently—evaluating each line of code
for existing code smell types. If the majority of the inspectors
(i.e., at least two out of three) identified the same type of
security code smell at the same line of code, the majority
voting rule was enabled and the identified code smell instance
and its location was included as an issue within the oracle
dataset and the agreement level (i.e., 2/3 or 3/3) was reported.
If the majority of the inspectors did not identify any code
smell instances for a code example, that code example was

3GLITCH’s most recent update also supports Terraform and Docker;
however, their oracle dataset is not available [38].

labeled with None and was assigned with agreement level
of 1/3. The original study showed that GLITCH outperforms
prior approaches, achieving a mean improvement of 15.3 and
15.6 percentage points in precision and recall, respectively.

III. STUDY DESIGN

In this section, we discuss the insights derived from the
annotation process of GLITCH and use them to outline our
approach for conducting the study.

A. Developer Perceptions Insight

Based on the labeling process, three patterns emerge when
GLITCH raises a false alarm—GLITCH identifies an incident
of a certain type of security code smell while the majority of
the inspectors disagree with what GLITCH has found:

• Pattern 1 - None-smelly: The strongest evidence that
GLITCH is incorrect occurs when inspectors unani-
mously agree no smell exists at the target line of code.

• Pattern 2 - Smelly with Majority Voting: GLITCH can
be considered incorrect when its detected code smell
type differs from the smell type that is identified by
the majority of the inspectors. In this scenario, a code
smell is identified for a target line of code by at least
two inspectors (i.e., agreement level ≥ 2/3); however,
GLITCH identifies a different security code smell type
for that line of code. Hence, although GLITCH is correct
to raise an alarm at that location, the alarm type that it
raises is likely to be incorrect.

• Pattern 3 - Smelly with Uncertainty: GLITCH can also be
considered incorrect when the majority voting rule (i.e.,
agreement level ≥ 2/3) is not met. In such cases, there is a
degree of uncertainty, as inspector perceptions of smells
has not reached a consensus. As such, types of smells
identified by inspectors are not the same—agreement
level of 1/3. Nonetheless, as there is uncertainty among
inspectors, GLITCH’s false alarm may agree with the
smell type identified by one of the inspectors.

Although all patterns of false alarms were treated similarly
in prior work, we conjecture that the implications of these
patterns are not the same. For example, while Pattern 1 - None-
smelly shows strong evidence of a false alarm, Pattern 3 -
Smelly with Uncertainty includes a degree of subjectiveness—
caused by the disagreement of inspectors on their perceptions
of code smells in IaC. Therefore, we set out to conduct an
empirical study, using GLITCH’s oracle dataset, to systemat-
ically re-evaluate the prevalence and characteristics of these
patterns of false alarms for gaining a deeper understanding of
the differences in developer perceptions of IaC code smells.
Figure 1 provides an overview of our study design which is
composed of data acquisition and analysis.

B. Data Acquisition

We use the replication package4 provided by Saavedra and
Ferreira [15] to access GLITCH’s oracle dataset and annota-
tions of individual inspectors of the oracle dataset. GLITCH’s

4The replication package is available at https://is.gd/TnxhX5.

https://is.gd/TnxhX5
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Fig. 1: Overview of the empirical study

TABLE II: Annotation count in GLITCH’s oracle dataset

Ansible Puppet Chef

Inspectors Count Inspectors Count Inspectors Count

First Author 104 First Author 122 First Author 122
Insp. 1 (Ansible) 158 Insp. 1 (Puppet) 120 Insp. 1 (Chef) 190
Insp. 2 (Ansible) 114 Insp. 2 (Puppet) 106 Insp. 2 (Chef) 179

Total 376 Total 348 Total 491

oracle dataset consists of entries for Ansible, Puppet, and Chef
and is created by annotating 81 code examples for Ansible and
80 code examples for each of Puppet and Chef settings for
their incidences of code smells—241 code examples in total.
We use the entire dataset to conduct our empirical analysis.
Each code example is annotated by three different inspectors,
resulting in a total of 1, 215 annotations—376 Ansible, 348
Puppet, and 491 Chef annotations, respectively (see Table II).
As inspector annotations are carried out independently, their
identified incidences of code smells may, or may not, be the
same for a target line of code. If at least two inspectors
annotate the same code smell instance for a target line of
code (i.e., agreement level ≥ 2/3), that annotation is included
as an issue within GLITCH’s oracle dataset. From the total of
1, 215 annotations, 378 incidences of code smells are included
as oracle dataset issues—113 Ansible, 117 Puppet, and 148
Chef issues, respectively. For each issue of the oracle dataset,
we analyze the type of the smell incident, known as ground
truth, and the reported number of inspectors who agreed on the
annotation of the smell incident—known as agreement level.
In contrast to the original paper of GLITCH [15], in which
the agreement levels are reported as range-level averaging
values, in the current paper we calculate the agreement levels
using instance-level averaging. It is noteworthy that, we found
errors in the original oracle dataset—discrepancies among few
reported agreement levels and their corresponding inspector
annotations. In cases of such discrepancies, we use the anno-
tations made by the inspectors as the correct agreement level.

C. Analysis

We use the oracle issues and the individual annotations
of the inspectors to analyze varied developer perceptions of
IaC code smells, by assessing the prevalence of annotation

disagreements and confounding factors which may influence
them. Furthermore, we investigate whether these disagree-
ments can undermine GLITCH’s perceived performance.
Misalignment in developer perceptions: We analyze annota-
tion disagreements among the inspectors of the oracle dataset
as indications of misaligned developer perceptions of code
smells in IaC. To achieve this, for each oracle issue we first
determine the code example (tainted script) and its line of code
(tainted location) that contains the code smell. For instance,
Listing 1 is a tainted script in which an incident of the hard-
coded secret smell appears on line 7 as the tainted location.

We then identify the annotators of the tainted script. If an
inspector has not annotated any code smell for the tainted
location, the individual annotation of that inspector for the
current oracle issue is assigned as none. Otherwise, the types
of code smells identified by the inspectors are assigned as their
individual annotations of the target oracle issue. As such, for
each oracle issue we can determine the inspector with varied
smell perception compared to others.
GLITCH’s false alarms: We analyze GLITCH’s false alarms
to investigate whether there is a relationship between de-
veloper perceptions of code smells and the tool’s perceived
performance—whether acclaimed false alarms are independent
of the inspector annotations. To do so, we first identify the
tainted script and the tainted location of the false alarm. We
then determine whether there exists an oracle issue at the
tainted location. If all inspectors unanimously agree the tainted
location is not smelly, the false alarm belongs to Pattern 1
- Non-smelly. If by majority voting a code smell incident
is annotated for the tainted location in the oracle dataset,
the false alarm belongs to Pattern 2 - Smelly with Majority
Voting. Otherwise, there is a degree of uncertainty among the
inspectors when annotating the tainted location; hence, the
false alarm belongs to Pattern 3 - Smelly with Uncertainty.

IV. PREVALENCE & IMPACT OF DISAGREEMENTS

In this section, we quantify the prevalence of disagreements
among inspector perceptions on IaC code smells.

RQ1: How prevalent are labeling disagreements?

Approach. To address this research question, we analyze
IaC code smells that are agreed upon by the majority of the
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TABLE III: Uncertainty count in identifying IaC code smells

Ansible Puppet Chef

Agreement Level of 1/3 4 6 2
Agreement Level of 2/3 45 51 67
Agreement Level of 3/3 64 60 79

Total 113 117 148

inspectors. For each issue in the oracle dataset, we check
the annotations of individual inspectors. If casted labels of
individual inspectors are the same, we interpret the oracle
issue as an agreement. Cases where all three inspectors are in
agreement are labeled as agreement level of 3/3. Cases where
two inspectors are in agreement are labeled as agreement level
of 2/3 while cases without any agreement among inspectors
are labeled as agreement level of 1/3.
Observation 1: Approximately half of the studied oracle
issues have some degree of disagreement among the
inspectors. Table III shows that 64 of 113 (56.6%), 60 of
117 (51.3%), and 79 of 148 (53.4%) of the studied oracle
issues are at agreement level of 3/3 (unanimous agreement
across inspectors) in Ansible, Puppet, and Chef, respectively.
In other words, 43.4%–48.7% of oracle issues have at least
one dissenting vote. Presence of annotation disagreements for
nearly half of the oracle issues demonstrates that there may
be ambiguity in developer perceptions of code smells in IaC.
To investigate whether there are any meaningful differences
between dissenting votes at different agreement levels, we
apply Cochran’s Q statistical test [40] for each IaC technology.
This test and any other conducted statistical tests are non-
parametric as we do not make any assumptions regarding
the probability distribution of the data under investigation.
When running multiple comparisons, to raise the confidence
bar, we apply the Bonferroni correction [41] on the threshold
of significance—α/k, with α being the confidence limit =
0.05 and k being the count of testing hypotheses which is
three when running the test across Ansible, Puppet, and Chef
settings. For Cochran’s Q test we correct the significance
threshold as 0.05/3 = 0.017. We use the values in Table III, as
input effect sizes to evaluate whether annotation disagreements
among inspectors are statistically significant or the disagree-
ments among inspectors are caused by chance. Based on the
test result (i.e., p − value > 0.017), we conclude that there
are no statistically significant differences among the inspector
annotation disagreements at different agreement levels.
Observation 2: 3% of the studied oracle issues are without
agreement among inspectors. Table III reveals that 109 of
113 (96.5%), 111 of 117 (94.9%), and 146 of 148 (98.6%)
of the studied oracle issues of Ansible, Puppet, and Chef,
have an agreement level of at least 2/3 among the inspectors;
however, there are 12 cases (3.2%) without any agreement
among inspectors—they have agreement level of 1/3 (see
section III). The presence of cases without any agreement
highlights the possibility of existing fully varied developer
perceptions on code smells in IaC. As such, relying solely
on the majority voting for determining definitive ground truth
may lead to potential flaws in the oracle datasets; however,

oracle issues with one dissenting vote represent a group of
fully-biased incidences of code smells in IaC.

RQ1 Summary. Nearly half (i.e., 43.4%–48.7%) of
the studied IaC oracle issues have some degree of
disagreement among inspectors, suggesting that there
is subjectivity at play, which should be handled with
care during subsequent analyses.

RQ2: Do false alarms correlate with the annotations of the
oracle dataset?

Approach. To address this research question, we analyze
the occurrences of GLITCH’s false alarms. For these cases,
the tool always receives the blame; however, in cases of
disagreements among the inspectors, it may be possible that
GLITCH’s raised alarm is similar to one of the inspector’s
identified smell type (see section III). To further analyze this
possibility, for each false alarm we examine corresponding
annotations of individual inspectors to determine whether any
incident of smell is identified by the inspectors and if true,
what is the identified code smell type. Through this analysis,
we aim to measure the strength of correlation (or lack thereof)
between GLITCH’s false alarms and the types of IaC code
smells that are identified by the individual inspectors or are
agreed upon among the majority of them. This evaluation
enables us to assess the impact of varied and ambiguous
developer perceptions of code smells in IaC on the perceived
performance of smell detection tools like GLITCH.
Observation 3: Roughly half of the false alarms are raised
in code for which inspectors raised concerns. In Ansible,
Puppet, and Chef settings, 6 of 15 (40%) , 54 of 86 (62.8%),
and 22 of 52 (42.3%) GLITCH’s false alarms belong to Pattern
1 - None-smelly, respectively. This suggests that for 71 of 153
(46.4%) of false alarms, GLITCH is not entirely incorrect—it
detects an IaC code smell with at least one inspector agreeing
on the presence of an IaC code smell instance.
Observation 4: Approximately a quarter of false alarms
are misidentified for other types of code smells in IaC. In
Ansible and Puppet settings, 5 out of 15 (33.3%) and 18 of 86
(20.9%) false alarms are identified as smells by the majority
of inspectors; however, the smell type differs from that of
the tool—Pattern 2 - Smelly with Majority Voting. Similarly
in Chef setting, 16 of 52 (30.8%) false alarms also belong
to Pattern 2 - Smelly with Majority Voting. This suggests
that while GLITCH correctly detects an incident of a security
code smell, it is prone to mistakenly applying the wrong type.
This is not unexpected as GLITCH uses regular expression
detection patterns for identifying code smell types. Due to
the nature of different smell types and their close similarities,
their mapped detection patterns may include mutual rules. For
instance, this is the case for hard-coded secret and admin by
default code smell types. As such, if the tool detects a smell
incident using a regular expression rule that is mutually used
among hard-coded secrets and admins by default, it may as-
sociate the incident with the wrong smell pattern—the present
code smell type is admin by default; but, the tool identifies it
as hard-coded secret. The implications for such false alarms
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Listing 2: Part of a real-world Redhat Puppet code example
1 class galera::server(
2 $bootstrap = false,
3 $debug = false,
4 $wsrep_node_address = undef,
5 $wsrep_provider='usr/lib64/galera/libgalera_smm.so',
6 $wsrep_cluster_name = 'galera_cluster',
7 $wsrep_cluster_members = [ $::ipaddress ],
8 $wsrep_sst_method = 'rsync',

9 $wsrep_sst_username = 'root', )

are different than Pattern 1 - None-smelly cases, where all
inspectors agree that there is no smell; but, the tool reports
one. Pattern 2 - Smelly with Majority Voting false alarms
discriminate between smell-prone and clean code, which may
be a boon for project maintainers who can act on such coarse
grained information when, e.g., planning refactoring efforts;
however, the misleading reports of incorrect code smell types
can still be harmful and erode the trust of users in the tool.

Moreover, we conduct an open coding analysis to investigate
any potential relationship among IaC block context and code
smell incidences. Specifically, the first and the third author
of the paper evaluate each false alarm raised by GLITCH, to
(1) discover whether the false alarm is raised inside a block
(i.e., a number of Ansible tasks or resources in Puppet and
Chef, grouped together to accomplish a certain goal) and (2)
to identify the goal of the surrounding IaC context. Based on
the results of the analysis, 26.7% (4 out of 15), 10.5% (9
out of 86), and 38.5% (20 out of 52) of the false alarms in
Ansible, Puppet, and Chef, reside outside of IaC blocks—for
all investigated technologies, the majority of false alarms are
raised within IaC blocks. Similarly, 33.30% (5 out of 15),
32.6% (28 out of 86), and 50.0% (26 out of 52) of false
alarms in Ansible, Puppet, and Chef, are raised within IaC
enforcing different levels of user privileges. 80.0% (4 out of
5), 100.0% (28 out of 28), and 76.9% (20 out of 26) of these
false alarms are raised inside Ansible, Puppet, and Chef IaC
blocks, respectively. These results suggest that identifying the
correct type of IaC code smells can be particularly challenging
when IaC is used to set different levels of privileges for users.
Observation 5: More than four-fifths of misidentified hard-
coded secrets by GLITCH are admins by default. In
Ansible setting, five false positives are misclassified as hard-
coded secrets by GLITCH; however, the ground truth of four
of them is admin by default while the last false positive has
an empty password as its ground truth. In Puppet setting,
18 false positives are misclassified as hard-coded secrets
by GLITCH, despite the ground truth indicating five cases
as empty password and 13 cases as admin by default. A
similar pattern occurs in Chef, where 15 false positives are
misclassified as hard-coded secrets by GLITCH, although their
ground truth labels point to admin by default. In total, 32
of 38 (84.2%) hard-coded secret false alarms of GLITCH
are labeled as admin by default in the oracle dataset. For
instance, Listing 2 illustrates such false alarms in the Puppet
code of Redhat OpenStack.5 In this example, line 9 sets the

5The code example is accessible at https://is.gd/bnofu4.

username of the server as root which is an indicator of admin
by default—similar to the ground truth label. Meanwhile,
GLITCH recognizes the code smell incident as a hard-coded
secret. Current observations suggest that the definitions of dif-
ferent types of code smells in IaC may not be interdependent
which will lead to ambiguities with IaC practitioners and pose
challenges for relevant detection tools such as Checkov [42]
and Terrascan [43]. Instances of one type, e.g., type A, can be
regularly misidentified as another type—type B. This suggests
the need for expert attention to determine if type A and type
B can co-occur.

RQ2 Summary. Roughly half (46.4%) of the false
alarms raised by GLITCH are not entirely incorrect,
with at least one inspector agreeing on an incident
of a smell, suggesting difficulties in current developer
perceptions of code smells in IaC.

V. INVESTIGATING CONFOUNDING FACTORS

In this section, we investigate to what extent common con-
founding factors can explain the incidences of disagreement
among developer perceptions on code smells in IaC.

RQ3: How labeling disagreements distribute among inspec-
tors?

Approach. In this research question, we aim to under-
stand how labeling disagreements are distributed among the
inspectors who took part in the labeling process. As such we
can determine whether an individual inspector has a different
perception on a specific code smell type from the rest. To
achieve this goal, we compute how often each inspector
submits a dissenting vote at each agreement level for each
IaC technology. More specifically, we first select oracle issues
with an agreement level other than 3/3. Then, for each se-
lected instance, we identify which inspectors (i.e., first author,
Inspector 1, or Inspector 2) cast the dissenting vote. Using
these issues, we analyze the frequency of dissenting votes at
agreement levels of 1/3 and 2/3 to study whether inspector
tendencies are at play. In cases of agreement level of 1/3,
the dissenters are the sole vote in favour of the code smell
instance being present. At agreement level of 2/3, dissenters
vote against the majority, either in terms of the presence or
the type of IaC code smell. In both cases, the dissenting vote
is overruled by the majority of the inspectors.
Observation 6. All inspectors cast dissenting votes about
code smells in IaC. Table IV shows how often each inspector
is implicated in IaC code smell perception disagreements. For
Ansible, the first author, Inspector 1, and Inspector 2 are
implicated in 24.5%, 36.7%, and 38.8% of disagreements.
For Puppet, the first author is implicated in only 15.8% of
disagreements while Inspector 1 and Inspector 2 dominate the
disagreements by casting 36.8% and 47.4% of the dissenting
votes, respectively. For Chef, the first author casts 59.4% of the
annotation disagreement votes while Inspector 1 and Inspector
2 are implicated in only 23.2% and 17.4% of disagreements,
respectively. At agreement level of 2/3, it is clear that all
inspectors can be the one who cast the dissenting vote. Indeed,

https://is.gd/bnofu4
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TABLE IV: The frequency of dissenting votes casted by inspectors across different agreement levels

Agreement Level Ansible Puppet Chef

First Author Insp. 1 Insp. 2 First Author Insp. 1 Insp. 2 First Author Insp. 1 Insp. 2

1/3 3 0 1 5 0 1 2 0 0
2/3 9 18 18 4 21 26 39 16 12

while Inspectors 1 and 2 cast more dissenting votes in Ansible
and Puppet settings, the situation is reversed in Chef setting,
where the first author of the original study contributes to 39
dissenting votes, whereas Inspectors 1 and 2 cast only 16
and 12, respectively. Since all inspectors are implicated in
disagreements, the dissenting votes cannot be simply explained
by a (single) rogue inspector who always has a different
perception of code smells in IaC from the rest.

To further analyze the inspector implications in annotation
disagreements, we apply Fisher’s Exact statistical test [44] and
evaluate probable significant differences between dissenting
votes casted by the inspectors. For each IaC technology,
the test’s contingency table is constructed among every two
inspectors, using the count of their dissenting votes and oracle
issues they agree on. For this test we correct the significance
threshold to 0.05/3 = 0.017. Based on the results, there are no
significant annotation differences (i.e., p − value > 0.017)
among the inspectors of Ansible. Meanwhile, there exist
significant differences among the first author and Inspector 2
in Puppet and the first author and Inspectors 1 and Inspector
2 in Chef (i.e., p− value < 0.017), respectively.

We also analyze the distribution of annotation disagreements
among the inspectors by calculating the diversity measure
similar to the study conducted by Moussa et al. [45]. For
this purpose, for every IaC technology we investigate the
disagreement diversity among every inspector pair—three val-
ues for three inspector pairs; the first author with Inspector
1 and 2, and Inspector 1 with Inspector 2. The diversity
measure is calculated as the fraction of oracle issues the pair
annotates differently, compared to the total population of the
oracle issues for each IaC technology. As such, the diversity
measure varies from 0 to 1 with higher values indicating
higher levels of annotation disagreement among the inspector
pairs. In this context the diversity among the three inspector
pairs are 0.32, 0.33, and 0.37, 0.33, 0.38, and 0.44, and
0.42, 0.40, and 0.26 for Ansible, Puppet, and Chef settings,
respectively. According to the results, Ansible inspectors have
the most similarity when annotating the oracle dataset (i.e.,
mean diversity measure = 0.34) while inspectors of Puppet
demonstrate the highest annotation diversity—mean diversity
measure = 0.38. Nonetheless, these results demonstrate similar
levels of inspector diversity among IaC technologies.
Observation 7. The first author is implicated in almost all
of the disagreements at the agreement level of 1/3. Among
the incidences of code smells with agreement level of 1/3, 12
of them are included as issues within the oracle dataset. In
these cases, one inspector cast the dissenting vote in favour
of the occurrence of the oracle issues. Table IV shows the
break down of such dissenting votes per inspector—the row for
agreement level of 1/3. These occurrences are not distributed

equally among all inspectors. 10 of 12 (83.3%) of such oracle
issues have the sole favoring dissenting vote from the first
author—the first author’s annotation is the ground truth. There
are only two cases, one for Ansible and one for Puppet, where
Inspector 2 submits the ground truth annotation, indicating
different developers cast different votes towards the occurrence
of varied code smell types. Similar observation is made for
GLITCH’s false alarms that belong to Pattern 3 - Smelly with
Uncertainty. A false alarm can be raised when only a single
inspector is in favor of the smell incident, indicating the tool’s
false alarm could be considered a code smell, if the oracle
issue was inspected by different developers.

RQ3 Summary. Although the first author casts the
majority of the dissenting votes at agreement level of
1/3, the results of the statistical tests demonstrate that
all inspectors cast a considerable number of dissenting
votes towards the incidences of IaC code smells.

RQ4: How are labeling disagreements distributed across the
types of IaC code smells?

Approach. In this research question, we aim to understand
how labeling disagreements are distributed across different
types of IaC code smells. Specifically, we want to know
whether there is a specific IaC code smell type for which de-
velopers have different perception from each other. To achieve
this goal, for each IaC technology, we compute how often each
inspector submits a dissenting vote against the majority and
analyze the IaC code smell types that receive the dissenting
votes. Specifically, we first select oracle issues with agreement
level of 2/3. Then, for the selected issues, we determine the
inspector who is responsible for submitting the dissenting
vote. As such, we are able to calculate the contributions of
individuals in the submission of dissenting votes stratified by
code smell types and IaC technology settings. Additionally, we
aim to determine whether varied code smell types contribute
to similar uncertainties.
Observation 8. No single type of IaC code smells dominates
the disagreements. Figure 2 illustrates the misidentification
of different types of IaC code smells among the inspectors
at agreement level of 2/3. There is no single type that is
responsible for the bulk of dissenting votes. Specifically, in
Ansible and Puppet settings, the two most frequently occurring
types (i.e., use of HTTP without TLS and admin by default)
only account for 10 of 45 (22.2%) and 12 of 51 (23.5%) of
the incidences of dissenting votes, respectively. On the other
hand, in Chef setting, admins by default account for 27 of
67 (40.3 %) of the incidences of dissenting votes—suggesting
that this code smell type is particularly vague in the context of
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Chef, leading to varied developer perceptions. One reason we
found is that the first author missed the incidences of the smell
when mysql commands are used with the root user, which have
frequent appearances in Chef compared to other IaC settings.
Nonetheless, the remaining 40 of 67 (59.7%) disagreement
incidences are rather evenly dispersed among the other six
code smell types, indicating that no single type of IaC code
smells dominates the annotation disagreements.

Additionally, we calculate Shannon’s normalized en-
tropy [46] to assess the level of uncertainty within IaC settings.
The entropy values are calculated based on the number of votes
for each smell type for each IaC setting (e.g., for Ansible, the
voting entropy for each smell type is [6/28, 5/28, 1/28, 5/28,
1/28, 10/28], with a total of nine smell types), spanning the
range between 0 and 1—with higher entropy values indicating
that the dissenting votes are not localized to a specific code
smell type. In this context, the entropy values are 0.7, 0.8,
and 0.6 for Ansible, Puppet, and Chef settings, respectively.
It is noteworthy that the entropy is high across all settings;
however, compared to others, Chef has the lowest entropy,
indicating that the majority of its dissenting votes span across
fewer code smell types. Nonetheless, these entropy values
confirms the dispersion of inspector annotation disagreements
across different IaC code smell types.

Finally, we conduct Eta-Squared statistical test [47] as a
measure of effect sizes to analyze the extent of which the
count of dissenting votes vary among different code smell
types. For this purpose, for each IaC setting, we calculate
the correlation ratio between variances of dissenting votes for
each code smell type and the total variance of disagreements
across all smell categories. As such the correlation ratio ranges
from 0 to 1, with values equal to or greater than 0.14 as
indicators of large effect sizes of code smell types on the
count of their corresponding dissenting votes [48]. Similarly,
correlation values less than 0.14 but greater than or equal
to 0.06 indicate medium effect sizes while values less than
0.06 are indicators of small effect sizes. According to the
results of the conducted analysis, the use of HTTP without
TLS (i.e., η2 = 0.11) in Ansible and admins by default (i.e.,
η2 = 0.09) in Puppet have medium effect sizes on their
corresponding dissenting votes. Furthermore, the only large
effect size (i.e., η2 = 0.23) exists for admins by default
in Chef. As shown in Figure 2, the same code smell type
can have varying levels of inspector discrepancy across IaC
settings—small, medium, and large effect sizes for admins
by default across Ansible, Puppet, and Chef, respectively.
To identify underlying reasons for these differences across
technologies, we compare disagreement cases of the smell
across them. Our analysis demonstrates that the Ansible user
defined to execute a play is a common cause of discrepancy in
admins by default detection. Meanwhile, Shell operations in
Puppet raise disagreements about the smell. Finally, in Chef,
SQL commands are causing disagreements. As such, we can
conclude that inherent differences among IaC settings enforce
the developers to adopt varying best practices accordingly,
causing different levels of understanding and disagreement
rates towards the same code smell type across settings.
Observation 9. Different developers have varied tendencies

for misidentifying different types of IaC code smells.
Figure 2 shows the number of misidentifications for individual
inspectors across different types of code smells in IaC. The
figure also highlights that different inspectors have varied
biases toward certain IaC code smell types. For example, the
first author of the original study submits 9 of 10 and 11 of
11 of the dissenting votes for use of HTTP without TLS code
smell instances in Ansible and Chef settings, respectively. A
similar pattern is also found in Puppet setting, with Inspector
2 submitting 10 of 10 of the dissenting votes for missing
default in case statement code smell instances. This figure also
highlights that some inspectors do not submit any dissenting
vote for certain types of IaC code smells. For instance, the
first author never submits a dissenting vote for missing default
in case statement across all settings. This suggests that deep
subject matter expertise may help to reduce rates of dissension
or varied perceptions of a specific type of code smell in IaC.

RQ4 Summary. There is no single type of IaC code
smell that is responsible for the bulk of the disagree-
ments; however, different inspectors exhibit varied ten-
dencies in submitting dissenting votes when the types
of smells are taken into consideration.

VI. PRACTICAL IMPLICATIONS

In this section, we discuss the practical implications for de-
velopers and researchers, derived from the results in section IV
and section V.

PI1: Manual identification of code smells in IaC is profoundly
impacted by inspector bias.

Several observations from our research questions show the
profound impact of inspector bias on the oracle dataset.
(1) Half of the IaC oracle issues depend on the chosen
inspectors (RQ1 - Observation 1). Nearly half of the studied
IaC oracle issues have some degree of disagreement among
inspectors. As such, in case of an oracle issue with agreement
level of 2/3, if one of the two majority inspectors is replaced
with a new developer, whose perception of IaC code smells
is similar to the dissenter, the target issue would be removed
from the oracle dataset, subjecting the oracle dataset to change.
(2) Subjectivity towards different types of IaC code smells
varies among developers (RQ3 - Observation 6 and RQ4 -
Observation 9). All inspectors regularly cast dissenting votes
about IaC code smells; however, one (e.g., inspector X) may
constantly misidentify a specific type of code smell (e.g.,
type A) for another category—type B. As such, if inspectors
share their knowledge before annotation, inspector X can be
influenced by others and their perceptions of code smells may
align. This could consequently produce a more robust oracle
dataset with increased agreement levels.
(3) The extent to which developers neglect incidences of code
smells varies among them (RQ1 - Observation 2). 12 issues
of the IaC oracle dataset have agreement level of 1/3. Six of
these issues are cases where two inspectors do not agree on
the code smell type, while the last inspector does not identify
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Fig. 2: Inspector implications in code smell misidentification for each code smell type, except none
Eta-Squared statistical test, [*]: small effect sizes (η2 < 0.06), [**]: medium effect sizes (0.06 <= η2 < 0.14), and [***]: large effect sizes (η2 >= 0.14))

Listing 3: Part of a real-world OpenStack Puppet code example
1 class { '::designate::api':
2 listen => "${::openstack_integration::

config::ip_for_url}:9001",

3
api_base_uri => "http://${::openstack
_integration::config::ip_for_url}:9001",

4 auth_strategy => 'keystone',
5 enable_api_v2 => true,
6 enable_api_admin => true}

any incidences of code smells. The remaining six issues with
agreement level of 1/3 (six out of 12) are only identified by
the first author while other two inspectors do not identify any
incidences of code smells. Listing 3 demonstrates one instance
of these six issues in a Puppet code example for OpenStack
integration.6 In this example, the URL address is accessed
without establishing any security layer (line 3) and thus the
occurrence of use of HTTP without TLS is clear. Meanwhile,
Inspector 1 and Inspector 2 overlooked the smell incident,
despite the problem being trivial to identify. Incidences of
code smells in the rest of these six issues are also easily
detectable, if inspector 1 and inspector 2 were more diligent
annotators, consequently establishing an oracle dataset with
increased agreement levels.
For Developers. Based on discussed observations, we argue
that the use of the majority voting rule can reduce the impact of
developer personal biases when annotating an oracle dataset;
but, it does not eliminate it completely. To address this
problem, first, based on insights derived from previous studies
[49], [50], we make recommendations for the participation of
more than three developers in the annotation of the IaC oracle
dataset. As such, the impact of subjectivity towards different
IaC code smell types among different inspectors decreases.
Second, we make recommendations for the inspectors to share
their knowledge before annotating the oracle dataset. This
recommendation aims to align their varied perceptions of IaC
code smells. Finally, we make recommendations for a meeting
after the annotation, to identify potential cases of negligence
and reach consensus in such disagreements. As demonstrated
by Oliveira et al. [36], collaboration improves the effectiveness
of code smell identification in traditional source code. Thus,

6The code example is accessible at https://is.gd/EXloIs.

we expect the collaborative approach to also improve the
effectiveness of annotating the oracle dataset of smells in IaC.

PI2: IaC code smell types can co-occur.

Several observations from studied research questions sup-
port co-occurrences of varied types of IaC code smells.
(1) Employed rules by GLITCH for identifying admins by
default and empty passwords overlap with identification rules
for hard-coded secrets (RQ2 - Observation 4 and RQ2 -
Observation 5). With the exception of a single false alarm in
Chef setting (15 out of 16), all incidences in which GLITCH
misidentifies one type of IaC code smell as another involve
the misidentification of admin by default oracle issues as
hard-coded secret false alarms. The same pattern is observed
for Ansible and Puppet settings, with GLITCH regularly
misidentifying admins by default or empty passwords as hard-
coded secrets. By further analyzing GLITCH’s output, we find
that in all of these cases GLITCH generates two alarms for the
same location: not only it generates the false alarm (i.e., hard-
coded secret), but also it generates the ground truth—either
admin by default or empty password.
(2) Inspectors have ambiguous perceptions of admins by de-
fault, empty passwords, and hard-coded secrets (RQ4 - Obser-
vation 9 and Figure 2). Inspectors also demonstrate difficulties
in distinguishing hard-coded secrets from admins by default
and empty passwords when annotating the oracle dataset. Our
analysis reveals eight annotations where inspectors misidentify
an admin by default or an empty password as a hard-coded
secret. For instance, in Listing 2, the first author and Inspector
2 assign an admin by default smell to the root username on
line 9 while Inspector 1 misidentifies it as a hard-coded secret.
For half of these annotations (four out of eight), the inspectors
also identify the correct code smell type.

An underlying reason for difficulties in distinguishing these
smell types from each other is related to their nature. If in
a code example, the user is declared as root (i.e., $user =
“root”, both hard-coded secret and admin by default smell
incidences exist in the code example. Similarly, if the pass-
word is declared as an empty string (i.e., $password = “”),
both hard-coded secret and empty password smell incidences
exist. Meanwhile, not all incidences of admin by default, or
empty password, are perceived as hard-coded secrets. If root
usernames, or empty passwords, are declared using dynamic

https://is.gd/EXloIs
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TABLE V: The types of Java code smells identified in MLCQ
dataset

Java Code Smell Types Description

Blob A class with too many diverse functionalities.
Data Class A class with only data attributes.
Feature Envy A method using other classes’ members.
Long methods A method with too many responsibilities.

variables instead of literal strings (e.g., $passOne = “”, $pass-
word = $passOne) they would be only perceived as admins
by default, or empty passwords, and not hard-coded secrets.
For Researchers. Considering these findings, we make rec-
ommendations for researchers to revise the current catalog of
IaC code smells. The new catalog should set guidelines on the
co-occurrence of incidences of admin by default and empty
password with hard-coded secrets. If incidences of admin
by default, or empty password, and hard-coded secret occur
simultaneously, only the former should be perceived as the
ground truth. As such, the count of generated false alarms
would decrease and inspector uncertainties would reduce. For
instance, GLITCH raises 11, 57, and 37 hard-coded secret false
alarms for Ansible, Puppet, and Chef settings, respectively.
By applying our previous recommendation, co-existing hard-
coded secret false alarms with admin by default, or empty
passwords, would not be triggered and the count of false
alarms would be reduced by a total of 67 instances, increasing
GLITCH’s precision from 0.42 to 0.57, 0.14 to 0.20, and 0.20
to 0.29 in Ansible, Puppet, and Chef settings, respectively.

VII. TRIANGULATION

In this section of the paper, we triangulate developer per-
ceptions of code smells in IaC with code smells in traditional
sourced code. Specifically, we compare the prevalence of code
smells between IaC, as the target domain, and traditional
source code as the out-of-context (OOC) domain. We choose
Java code smells as the OOC domain as (1) Java is one of the
most popular programming languages for writing traditional
source code [51], [52] and (2) code smells in Java are
previously investigated [11]. We use MLCQ dataset provided
by Madeyeski and Lewowski [53] to access Java code smells
and individual annotations of the inspectors. MLCQ dataset
was created by annotating 792 Java projects for four types
of Java code smells including blob (or God class), data class,
feature envy, and long methods (see Table V). For this purpose,
26 developers used closed coding and annotated 4, 770 unique
Java code examples, resulting in total of 14, 729 annotations.

Approach. Similar to the conducted analysis for GLITCH’s
IaC oracle dataset, We analyze MLCQ dataset for developer
perceptions of Java code smells and possible differences
among their understanding of varied Java code smell types.
We specifically, investigate the prevalence of annotation dis-
agreements among MLCQ inspectors. For this aim, we first
identify unique Java code examples with at least two different
inspectors—1, 235 out of 4, 770. From these unique code
examples, we then identify the ones which are assigned with
different code smell types by the inspectors. These different
assigned labels are annotation disagreements among MLCQ

inspectors and are indicators of misalignment in developer
perceptions of Java code smells. Finally, we triangulate the
prevalence of annotation disagreements among MLCQ inspec-
tors with our results on IaC to infer whether there are any
significant differences between developer perceptions of code
smells in traditional source code and IaC.
Observation 10. 98.4% of incidences of Java code smells
are agreed upon by all of the participating inspectors. Out
of 1, 235 code examples with at least two different inspectors,
20 of them are assigned with different annotation labels. In
other words, in only 1.6% of the cases, developer perceptions
of Java code smells are different from each other.
Observation 11. When misidentified, incidences of blob are
only misinterpreted for data class incidences. Half of the
detected annotation disagreements (10 out of 20) are between
incidences of blob and data class Java code smell types, while
the rest (10 out of 20) are among the incidences of feature envy
and long methods. The consistency in misidentifying Java code
smell types suggests that there may be similarities among blob
and data class (also among feature envy and long methods) that
render them challenging for developers to differentiate.

Implication 1: There is a significant difference between devel-
oper perceptions of code smells in IaC and traditional source
code.

Observation 10 demonstrates the prevalence of Java code
smell disagreements to account for 1.6% of the investigated
unique code examples. Meanwhile, 46.3% of studied IaC
incidences have at least one dissenting vote. This contrast in
the prevalence of disagreements could be an indicator of varied
developer perceptions of code smells in IaC and traditional
source code. For investigating the validity of this assumption,
we use Fisher’s Exact statistical test [44]. The test is conducted
to evaluate whether there exists statistically significant associ-
ation between two groups of data with small distributions—
code smell incidences with and without disagreements. As
such, the total count of code smell incidences in Java and
IaC constitute the rows of the contingency table—1, 235 and
378 incidences for Java and IaC settings respectively. The
columns of the contingency table are the counts of dissenting
votes (i.e., 20 and 175 votes for Java and IaC, respectively)
and the counts of agreements towards the presence of code
smells. The test result demonstrates a significant difference
(i.e., p − value < 0.05) among the prevalence of developer
disagreements and their perceptions of code smells in IaC and
traditional source code.

Implication 2: Compared to IaC, code smells in traditional
source code are less ambiguous.

Observation 11 states that each Java code smell type is only
misidentified as one other specific type—blob incidences are
only misinterpreted for data class and incidences of feature
envy are only misidentified as long methods. Meanwhile, that
is not the case for IaC code smells. Other than two specific
code smell types that are regularly misidentified as each other
(i.e., empty passwords, or admins by default, and hard-coded
secrets), IaC code smell types are also misidentified as none,
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indicating the identification of the correct code smell type by
only one inspector (see section VI). Based on these observa-
tions, we argue that code smells in traditional source code are
less ambiguous compared to code smells in IaC. Hence, it is
much easier for developers to correctly differentiate among
Java code smell types.

One of the reasons for this difference can be due to the
definitions of Java code smells. Studied Java code smells are
defined based on object-oriented programming paradigm. Each
definition clearly declares the hierarchy level that the incident
of the smell can occur at—whether the code smell affects a
class or a method of a class (see Table V). As such, it is
unlikely for developers to misidentify the incidences of code
smells across different hierarchy levels. On the other hand, the
definitions of IaC code smells are not hierarchical in nature.
For instance, Ansible resources can be grouped into tasks
(i.e., method-level) and blocks—class-level. Meanwhile, IaC
code smell definitions, with the exception of missing default
in case statement which is inherently method-level, do not
determine the resource level that the code smell incident can
occur at. This ambiguity makes it challenging for developers
to accurately differentiate the types of code smells in IaC, in
contrast to code smells in Java.

It is also possible that the higher agreement among Java
developers is due to their higher level of expertise compared
to GLITCH’s inspectors. To evaluate this assumption we need
to analyze whether there exists any meaningful relationship
among the inspector levels of expertise and the count of their
casted dissenting votes. According to the original study [15],
the inspectors of the IaC oracle dataset are Master students
with five years of experience—constituting three years of ex-
perience in computer science, including software engineering,
and one to two years of focused expertise in IaC and/or cyber
security fields. Consequently, it is not possible to conclude
whether IaC inspector levels of expertise affect their tendencies
for casting dissenting votes. Meanwhile, the levels of expertise
of Java code smell inspectors varies among them. We use the
MLCQ inspector background survey to investigate, using Chi-
Square statistical test [54], whether there exists any correlation
between Java inspector levels of expertise and their tendencies
to cast dissenting votes. The results of the test demonstrates
no significant correlation (i.e., p − value > 0.05) between
the levels of expertise of the inspectors and the likelihood of
casting dissenting votes towards Java code smells.

VIII. THREATS TO VALIDITY

We breakdown the threats to the validity of our study into
construct, internal, and external.

A. Threats to Construct Validity

These threats pertain to the extend to which our mea-
surements are accurately captured. We use a simple fraction
to demonstrate the labeling agreement among the inspectors
of the IaC oracle dataset. For instance, if two out of three
inspectors identify the same incident of IaC code smells at
a line of code, the level of labeling agreement among them
is 2/3. Meanwhile, there are other practices (e.g., Cohen’s

Kappa and Fleiss’ Kappa coefficients) to measure the agree-
ment among two or multiple inspectors, respectively [55]–
[57]. We do not use these metrics because the annotation
process of the IaC oracle datasets is not aligned with their
calculation. Kappa coefficients are calculated using the total
number of inspected observations. In our case, the developers
inspect every line of code examples. If we strictly follow
the definition, the Kappa coefficients are calculated using the
number of code lines and thus the metrics would be strongly
biased towards full agreement among the inspectors because
most of the lines in the oracle dataset are easily identified as
not smelly. Consequently, neither of these coefficients would
reflect disagreements among the developers when they identify
the presence of code smells, but disagree about their type.
Hence, we report proportions of disagreement to measure the
consensus among developer perceptions when they identify
incidences of code smells.

B. Threats to Internal Validity

These threats are associated with inherited challenges threat-
ening the validity of our methods. In the current study, we use
the previously annotated oracle dataset of GLITCH. Except
for Saavedra, none of the other authors were involved in
the annotation process of the oracle dataset of GLITCH.
Furthermore, at the time, the annotation of the oracle dataset
was only carried out to serve as an evaluation baseline for
developing GLITCH as a detection tool for IaC code smells.
Hence, our analysis is conducted on the perception of IaC
developers who are external to the current study. As such, the
results of our study are ensured not to be affected by examiner
bias. For conducting the triangulation, we use MLCQ and
GLITCH’s oracle datasets annotated by different developers
which may have caused the observed differences among
developer perceptions of code smells in traditional source
code and IaC. Although we acknowledge this possibility, it
is highly unlikely to find developers who are experts in both
traditional source code and IaC [58]. Consequently, we have
opted to use oracle datasets that are annotated by developers
who are experts in their own respective fields. Furthermore,
by recruiting experts for annotation, although the inspectors of
oracle datasets are different from one another, they are similar
with respect to their level of specific expertise. Finally, one
may argue that the population of GLITCH’s oracle dataset is
not adequate for conducting our empirical study. We refute
this concern by emphasizing that the developer perceptions of
IaC code smells is analyzed using their individual annotations
of code examples—1, 215 annotations.

C. Threats to External Validity

These threats relate to generalizability of our results. The
analysis of IaC code smells is based on the oracle dataset of
GLITCH which is specifically designed for Ansible, Puppet,
and Chef settings. Hence, our results may not be applicable
to other IaC technologies including Terraform [59], which
is a widely used and popular IaC technology. Furthermore,
the oracle dataset of GLITCH does not represent smells in
IaC scripts that are written in general purpose programming
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languages (e.g., Pulumi [60]), or when specialized software
development kits (e.g., CDK8s [61] and CDKTF [62]) are
used. Meanwhile, GLITCH’s dataset is the only IaC oracle
dataset that provides complete access to individual annotations
of the inspectors. Hence, we choose this oracle dataset to
conduct our analysis on IaC code smells. Furthermore, it is
important to note that GLITCH (and consequently its oracle
dataset) is specifically designed to detect the most frequent
types of security-related IaC code smells [15]. Hence, we
cannot guarantee that our current findings would apply to
other less prevalent types of IaC code smells; however, using
GLITCH’s dataset enables us to study the most encountered
types of IaC code smells. We use two previously annotated
oracle datasets [15], [53] to triangulate developer perceptions
of code smells in IaC and traditional source code. Hence, any
limitations faced by these studies directly affect our results.
The triangulation is conducted based on Java’s object-oriented
design. Hence, our results may not apply when IaC code smells
are triangulated with other programming paradigms; however,
object-oriented programming is one of the most frequently
used paradigms and is compatible with most of the popular
programming languages [63]. Hence, using Java oracle dataset
enable us to position IaC code smells with smells in traditional
source code and their most common patterns.

IX. CONCLUSION

In this paper, we empirically assess developer perceptions of
IaC code smells and triangulate their understanding of code
smells in IaC and traditional source code. For this purpose,
we extensively analyze the oracle dataset of GLITCH, a state-
of-the-art detection tool for security code smells in IaC, for
the incidences of code smells, their types, and individual
annotations of the inspectors of the dataset. Our study reveals
that developer perceptions of IaC code smells is considerably
impacted by personal bias, leading to annotation disagreements
among the inspectors for 46.3% of the oracle issues. On the
other hand, the labeling disagreements affect only 1.6% of
Java code smells. These results warn developers about the
significant differences between their unified understanding of
code smells in traditional source code and their misaligned
perceptions of IaC code smells. We thereby make recommen-
dations for developers to share their knowledge before anno-
tating IaC code smells to align their ambiguous perceptions
of code smells. Furthermore, we advise them to share their
annotations in the end, to identify potential cases of annotation
negligence towards code smell incidences. Finally, we make
recommendations for revising the current catalog of IaC code
smells to set guidelines on situations of ambiguity due to the
co-occurrences of code smell incidences.
Future Work. We aim to evaluate the extent to which knowl-
edge sharing among developers is beneficial for addressing
the threats posed by individual biases. For this purpose, we
plan to conduct a controlled experiment involving two groups
of participants with one group annotating an oracle dataset
individually, while the latter group share their knowledge
before and after the annotation. We then compare the extent
of uncertainties faced by inspectors in each annotation setting.

Annotation uncertainties in the oracle dataset of GLITCH
raise concerns about the oracle annotation of similar detection
tools. Further investigation of these oracle datasets is necessary
to analyze the extent of their annotation uncertainties and
influence on the perceived performance of detection tools. Our
study reveals the negative effect of current limited taxonomy of
IaC code smells on inspector perceptions of them. We plan to
address these limitations by integrating hierarchical structure
of IaC code examples within the smell definitions—similar
to the definition of smells in the object-oriented paradigm.
Finally, the conducted evaluation affirms the co-occurrences
of admins by default and empty passwords with hard-coded
secrets, leading to these smells being confused with each other.
It may be possible for other smell types to co-occur as well.
To address this issue, we recommend extending the multi-
label classification to all co-occurrence incidences concerning
varying code smell types. Clearer distinctions among smell
types will provide further insights into detection patterns and
correlations among smells. We also recommend an evaluation
of the impact of these changes on the annotations of oracle
datasets by conducting empirical analyses.
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